|
|
|
"""Dataloaders.""" |
|
|
|
import os |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from torch.utils.data import DataLoader |
|
|
|
from ..augmentations import augment_hsv, copy_paste, letterbox |
|
from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, SmartDistributedSampler, seed_worker |
|
from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn |
|
from ..torch_utils import torch_distributed_zero_first |
|
from .augmentations import mixup, random_perspective |
|
|
|
RANK = int(os.getenv("RANK", -1)) |
|
|
|
|
|
def create_dataloader( |
|
path, |
|
imgsz, |
|
batch_size, |
|
stride, |
|
single_cls=False, |
|
hyp=None, |
|
augment=False, |
|
cache=False, |
|
pad=0.0, |
|
rect=False, |
|
rank=-1, |
|
workers=8, |
|
image_weights=False, |
|
quad=False, |
|
prefix="", |
|
shuffle=False, |
|
mask_downsample_ratio=1, |
|
overlap_mask=False, |
|
seed=0, |
|
): |
|
"""Creates a dataloader for training, validating, or testing YOLO models with various dataset options.""" |
|
if rect and shuffle: |
|
LOGGER.warning("WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False") |
|
shuffle = False |
|
with torch_distributed_zero_first(rank): |
|
dataset = LoadImagesAndLabelsAndMasks( |
|
path, |
|
imgsz, |
|
batch_size, |
|
augment=augment, |
|
hyp=hyp, |
|
rect=rect, |
|
cache_images=cache, |
|
single_cls=single_cls, |
|
stride=int(stride), |
|
pad=pad, |
|
image_weights=image_weights, |
|
prefix=prefix, |
|
downsample_ratio=mask_downsample_ratio, |
|
overlap=overlap_mask, |
|
rank=rank, |
|
) |
|
|
|
batch_size = min(batch_size, len(dataset)) |
|
nd = torch.cuda.device_count() |
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) |
|
sampler = None if rank == -1 else SmartDistributedSampler(dataset, shuffle=shuffle) |
|
loader = DataLoader if image_weights else InfiniteDataLoader |
|
generator = torch.Generator() |
|
generator.manual_seed(6148914691236517205 + seed + RANK) |
|
return loader( |
|
dataset, |
|
batch_size=batch_size, |
|
shuffle=shuffle and sampler is None, |
|
num_workers=nw, |
|
sampler=sampler, |
|
pin_memory=True, |
|
collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn, |
|
worker_init_fn=seed_worker, |
|
generator=generator, |
|
), dataset |
|
|
|
|
|
class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels): |
|
def __init__( |
|
self, |
|
path, |
|
img_size=640, |
|
batch_size=16, |
|
augment=False, |
|
hyp=None, |
|
rect=False, |
|
image_weights=False, |
|
cache_images=False, |
|
single_cls=False, |
|
stride=32, |
|
pad=0, |
|
min_items=0, |
|
prefix="", |
|
downsample_ratio=1, |
|
overlap=False, |
|
rank=-1, |
|
seed=0, |
|
): |
|
"""Initializes the dataset with image, label, and mask loading capabilities for training/testing.""" |
|
super().__init__( |
|
path, |
|
img_size, |
|
batch_size, |
|
augment, |
|
hyp, |
|
rect, |
|
image_weights, |
|
cache_images, |
|
single_cls, |
|
stride, |
|
pad, |
|
min_items, |
|
prefix, |
|
rank, |
|
seed, |
|
) |
|
self.downsample_ratio = downsample_ratio |
|
self.overlap = overlap |
|
|
|
def __getitem__(self, index): |
|
"""Returns a transformed item from the dataset at the specified index, handling indexing and image weighting.""" |
|
index = self.indices[index] |
|
|
|
hyp = self.hyp |
|
mosaic = self.mosaic and random.random() < hyp["mosaic"] |
|
masks = [] |
|
if mosaic: |
|
|
|
img, labels, segments = self.load_mosaic(index) |
|
shapes = None |
|
|
|
|
|
if random.random() < hyp["mixup"]: |
|
img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1))) |
|
|
|
else: |
|
|
|
img, (h0, w0), (h, w) = self.load_image(index) |
|
|
|
|
|
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size |
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) |
|
shapes = (h0, w0), ((h / h0, w / w0), pad) |
|
|
|
labels = self.labels[index].copy() |
|
|
|
segments = self.segments[index].copy() |
|
if len(segments): |
|
for i_s in range(len(segments)): |
|
segments[i_s] = xyn2xy( |
|
segments[i_s], |
|
ratio[0] * w, |
|
ratio[1] * h, |
|
padw=pad[0], |
|
padh=pad[1], |
|
) |
|
if labels.size: |
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) |
|
|
|
if self.augment: |
|
img, labels, segments = random_perspective( |
|
img, |
|
labels, |
|
segments=segments, |
|
degrees=hyp["degrees"], |
|
translate=hyp["translate"], |
|
scale=hyp["scale"], |
|
shear=hyp["shear"], |
|
perspective=hyp["perspective"], |
|
) |
|
|
|
nl = len(labels) |
|
if nl: |
|
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3) |
|
if self.overlap: |
|
masks, sorted_idx = polygons2masks_overlap( |
|
img.shape[:2], segments, downsample_ratio=self.downsample_ratio |
|
) |
|
masks = masks[None] |
|
labels = labels[sorted_idx] |
|
else: |
|
masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio) |
|
|
|
masks = ( |
|
torch.from_numpy(masks) |
|
if len(masks) |
|
else torch.zeros( |
|
1 if self.overlap else nl, img.shape[0] // self.downsample_ratio, img.shape[1] // self.downsample_ratio |
|
) |
|
) |
|
|
|
if self.augment: |
|
|
|
|
|
|
|
img, labels = self.albumentations(img, labels) |
|
nl = len(labels) |
|
|
|
|
|
augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"]) |
|
|
|
|
|
if random.random() < hyp["flipud"]: |
|
img = np.flipud(img) |
|
if nl: |
|
labels[:, 2] = 1 - labels[:, 2] |
|
masks = torch.flip(masks, dims=[1]) |
|
|
|
|
|
if random.random() < hyp["fliplr"]: |
|
img = np.fliplr(img) |
|
if nl: |
|
labels[:, 1] = 1 - labels[:, 1] |
|
masks = torch.flip(masks, dims=[2]) |
|
|
|
|
|
|
|
labels_out = torch.zeros((nl, 6)) |
|
if nl: |
|
labels_out[:, 1:] = torch.from_numpy(labels) |
|
|
|
|
|
img = img.transpose((2, 0, 1))[::-1] |
|
img = np.ascontiguousarray(img) |
|
|
|
return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks) |
|
|
|
def load_mosaic(self, index): |
|
"""Loads 1 image + 3 random images into a 4-image YOLOv5 mosaic, adjusting labels and segments accordingly.""" |
|
labels4, segments4 = [], [] |
|
s = self.img_size |
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) |
|
|
|
|
|
indices = [index] + random.choices(self.indices, k=3) |
|
for i, index in enumerate(indices): |
|
|
|
img, _, (h, w) = self.load_image(index) |
|
|
|
|
|
if i == 0: |
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h |
|
elif i == 1: |
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc |
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h |
|
elif i == 2: |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) |
|
elif i == 3: |
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) |
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] |
|
padw = x1a - x1b |
|
padh = y1a - y1b |
|
|
|
labels, segments = self.labels[index].copy(), self.segments[index].copy() |
|
|
|
if labels.size: |
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) |
|
segments = [xyn2xy(x, w, h, padw, padh) for x in segments] |
|
labels4.append(labels) |
|
segments4.extend(segments) |
|
|
|
|
|
labels4 = np.concatenate(labels4, 0) |
|
for x in (labels4[:, 1:], *segments4): |
|
np.clip(x, 0, 2 * s, out=x) |
|
|
|
|
|
|
|
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp["copy_paste"]) |
|
img4, labels4, segments4 = random_perspective( |
|
img4, |
|
labels4, |
|
segments4, |
|
degrees=self.hyp["degrees"], |
|
translate=self.hyp["translate"], |
|
scale=self.hyp["scale"], |
|
shear=self.hyp["shear"], |
|
perspective=self.hyp["perspective"], |
|
border=self.mosaic_border, |
|
) |
|
return img4, labels4, segments4 |
|
|
|
@staticmethod |
|
def collate_fn(batch): |
|
"""Custom collation function for DataLoader, batches images, labels, paths, shapes, and segmentation masks.""" |
|
img, label, path, shapes, masks = zip(*batch) |
|
batched_masks = torch.cat(masks, 0) |
|
for i, l in enumerate(label): |
|
l[:, 0] = i |
|
return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks |
|
|
|
|
|
def polygon2mask(img_size, polygons, color=1, downsample_ratio=1): |
|
""" |
|
Args: |
|
img_size (tuple): The image size. |
|
polygons (np.ndarray): [N, M], N is the number of polygons, |
|
M is the number of points(Be divided by 2). |
|
""" |
|
mask = np.zeros(img_size, dtype=np.uint8) |
|
polygons = np.asarray(polygons) |
|
polygons = polygons.astype(np.int32) |
|
shape = polygons.shape |
|
polygons = polygons.reshape(shape[0], -1, 2) |
|
cv2.fillPoly(mask, polygons, color=color) |
|
nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio) |
|
|
|
|
|
mask = cv2.resize(mask, (nw, nh)) |
|
return mask |
|
|
|
|
|
def polygons2masks(img_size, polygons, color, downsample_ratio=1): |
|
""" |
|
Args: |
|
img_size (tuple): The image size. |
|
polygons (list[np.ndarray]): each polygon is [N, M], |
|
N is the number of polygons, |
|
M is the number of points(Be divided by 2). |
|
""" |
|
masks = [] |
|
for si in range(len(polygons)): |
|
mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio) |
|
masks.append(mask) |
|
return np.array(masks) |
|
|
|
|
|
def polygons2masks_overlap(img_size, segments, downsample_ratio=1): |
|
"""Return a (640, 640) overlap mask.""" |
|
masks = np.zeros( |
|
(img_size[0] // downsample_ratio, img_size[1] // downsample_ratio), |
|
dtype=np.int32 if len(segments) > 255 else np.uint8, |
|
) |
|
areas = [] |
|
ms = [] |
|
for si in range(len(segments)): |
|
mask = polygon2mask( |
|
img_size, |
|
[segments[si].reshape(-1)], |
|
downsample_ratio=downsample_ratio, |
|
color=1, |
|
) |
|
ms.append(mask) |
|
areas.append(mask.sum()) |
|
areas = np.asarray(areas) |
|
index = np.argsort(-areas) |
|
ms = np.array(ms)[index] |
|
for i in range(len(segments)): |
|
mask = ms[i] * (i + 1) |
|
masks = masks + mask |
|
masks = np.clip(masks, a_min=0, a_max=i + 1) |
|
return masks, index |
|
|