Spaces:
Sleeping
Sleeping
# Ultralytics YOLOv5 🚀, AGPL-3.0 license | |
"""Activation functions.""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class SiLU(nn.Module): | |
def forward(x): | |
""" | |
Applies the Sigmoid-weighted Linear Unit (SiLU) activation function. | |
https://arxiv.org/pdf/1606.08415.pdf. | |
""" | |
return x * torch.sigmoid(x) | |
class Hardswish(nn.Module): | |
def forward(x): | |
""" | |
Applies the Hardswish activation function, compatible with TorchScript, CoreML, and ONNX. | |
Equivalent to x * F.hardsigmoid(x) | |
""" | |
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX | |
class Mish(nn.Module): | |
"""Mish activation https://github.com/digantamisra98/Mish.""" | |
def forward(x): | |
"""Applies the Mish activation function, a smooth alternative to ReLU.""" | |
return x * F.softplus(x).tanh() | |
class MemoryEfficientMish(nn.Module): | |
class F(torch.autograd.Function): | |
def forward(ctx, x): | |
"""Applies the Mish activation function, a smooth ReLU alternative, to the input tensor `x`.""" | |
ctx.save_for_backward(x) | |
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) | |
def backward(ctx, grad_output): | |
"""Computes the gradient of the Mish activation function with respect to input `x`.""" | |
x = ctx.saved_tensors[0] | |
sx = torch.sigmoid(x) | |
fx = F.softplus(x).tanh() | |
return grad_output * (fx + x * sx * (1 - fx * fx)) | |
def forward(self, x): | |
"""Applies the Mish activation function to the input tensor `x`.""" | |
return self.F.apply(x) | |
class FReLU(nn.Module): | |
"""FReLU activation https://arxiv.org/abs/2007.11824.""" | |
def __init__(self, c1, k=3): # ch_in, kernel | |
"""Initializes FReLU activation with channel `c1` and kernel size `k`.""" | |
super().__init__() | |
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) | |
self.bn = nn.BatchNorm2d(c1) | |
def forward(self, x): | |
""" | |
Applies FReLU activation with max operation between input and BN-convolved input. | |
https://arxiv.org/abs/2007.11824 | |
""" | |
return torch.max(x, self.bn(self.conv(x))) | |
class AconC(nn.Module): | |
""" | |
ACON activation (activate or not) function. | |
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter | |
See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf. | |
""" | |
def __init__(self, c1): | |
"""Initializes AconC with learnable parameters p1, p2, and beta for channel-wise activation control.""" | |
super().__init__() | |
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) | |
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) | |
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1)) | |
def forward(self, x): | |
"""Applies AconC activation function with learnable parameters for channel-wise control on input tensor x.""" | |
dpx = (self.p1 - self.p2) * x | |
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x | |
class MetaAconC(nn.Module): | |
""" | |
ACON activation (activate or not) function. | |
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter | |
See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf. | |
""" | |
def __init__(self, c1, k=1, s=1, r=16): | |
"""Initializes MetaAconC with params: channel_in (c1), kernel size (k=1), stride (s=1), reduction (r=16).""" | |
super().__init__() | |
c2 = max(r, c1 // r) | |
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) | |
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) | |
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True) | |
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True) | |
# self.bn1 = nn.BatchNorm2d(c2) | |
# self.bn2 = nn.BatchNorm2d(c1) | |
def forward(self, x): | |
"""Applies a forward pass transforming input `x` using learnable parameters and sigmoid activation.""" | |
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True) | |
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891 | |
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable | |
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed | |
dpx = (self.p1 - self.p2) * x | |
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x | |