|
|
|
"""Common modules.""" |
|
|
|
import ast |
|
import contextlib |
|
import json |
|
import math |
|
import platform |
|
import warnings |
|
import zipfile |
|
from collections import OrderedDict, namedtuple |
|
from copy import copy |
|
from pathlib import Path |
|
from urllib.parse import urlparse |
|
|
|
import cv2 |
|
import numpy as np |
|
import pandas as pd |
|
import requests |
|
import torch |
|
import torch.nn as nn |
|
from PIL import Image |
|
from torch.cuda import amp |
|
|
|
|
|
try: |
|
import ultralytics |
|
|
|
assert hasattr(ultralytics, "__version__") |
|
except (ImportError, AssertionError): |
|
import os |
|
|
|
os.system("pip install -U ultralytics") |
|
import ultralytics |
|
|
|
from ultralytics.utils.plotting import Annotator, colors, save_one_box |
|
|
|
from utils import TryExcept |
|
from utils.dataloaders import exif_transpose, letterbox |
|
from utils.general import ( |
|
LOGGER, |
|
ROOT, |
|
Profile, |
|
check_requirements, |
|
check_suffix, |
|
check_version, |
|
colorstr, |
|
increment_path, |
|
is_jupyter, |
|
make_divisible, |
|
non_max_suppression, |
|
scale_boxes, |
|
xywh2xyxy, |
|
xyxy2xywh, |
|
yaml_load, |
|
) |
|
from utils.torch_utils import copy_attr, smart_inference_mode |
|
|
|
|
|
def autopad(k, p=None, d=1): |
|
""" |
|
Pads kernel to 'same' output shape, adjusting for optional dilation; returns padding size. |
|
|
|
`k`: kernel, `p`: padding, `d`: dilation. |
|
""" |
|
if d > 1: |
|
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] |
|
if p is None: |
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] |
|
return p |
|
|
|
|
|
class Conv(nn.Module): |
|
|
|
default_act = nn.SiLU() |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): |
|
"""Initializes a standard convolution layer with optional batch normalization and activation.""" |
|
super().__init__() |
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) |
|
self.bn = nn.BatchNorm2d(c2) |
|
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() |
|
|
|
def forward(self, x): |
|
"""Applies a convolution followed by batch normalization and an activation function to the input tensor `x`.""" |
|
return self.act(self.bn(self.conv(x))) |
|
|
|
def forward_fuse(self, x): |
|
"""Applies a fused convolution and activation function to the input tensor `x`.""" |
|
return self.act(self.conv(x)) |
|
|
|
|
|
class DWConv(Conv): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): |
|
"""Initializes a depth-wise convolution layer with optional activation; args: input channels (c1), output |
|
channels (c2), kernel size (k), stride (s), dilation (d), and activation flag (act). |
|
""" |
|
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act) |
|
|
|
|
|
class DWConvTranspose2d(nn.ConvTranspose2d): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): |
|
"""Initializes a depth-wise transpose convolutional layer for YOLOv5; args: input channels (c1), output channels |
|
(c2), kernel size (k), stride (s), input padding (p1), output padding (p2). |
|
""" |
|
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2)) |
|
|
|
|
|
class TransformerLayer(nn.Module): |
|
|
|
def __init__(self, c, num_heads): |
|
""" |
|
Initializes a transformer layer, sans LayerNorm for performance, with multihead attention and linear layers. |
|
|
|
See as described in https://arxiv.org/abs/2010.11929. |
|
""" |
|
super().__init__() |
|
self.q = nn.Linear(c, c, bias=False) |
|
self.k = nn.Linear(c, c, bias=False) |
|
self.v = nn.Linear(c, c, bias=False) |
|
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) |
|
self.fc1 = nn.Linear(c, c, bias=False) |
|
self.fc2 = nn.Linear(c, c, bias=False) |
|
|
|
def forward(self, x): |
|
"""Performs forward pass using MultiheadAttention and two linear transformations with residual connections.""" |
|
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x |
|
x = self.fc2(self.fc1(x)) + x |
|
return x |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
|
|
def __init__(self, c1, c2, num_heads, num_layers): |
|
"""Initializes a Transformer block for vision tasks, adapting dimensions if necessary and stacking specified |
|
layers. |
|
""" |
|
super().__init__() |
|
self.conv = None |
|
if c1 != c2: |
|
self.conv = Conv(c1, c2) |
|
self.linear = nn.Linear(c2, c2) |
|
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers))) |
|
self.c2 = c2 |
|
|
|
def forward(self, x): |
|
"""Processes input through an optional convolution, followed by Transformer layers and position embeddings for |
|
object detection. |
|
""" |
|
if self.conv is not None: |
|
x = self.conv(x) |
|
b, _, w, h = x.shape |
|
p = x.flatten(2).permute(2, 0, 1) |
|
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): |
|
"""Initializes a standard bottleneck layer with optional shortcut and group convolution, supporting channel |
|
expansion. |
|
""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_, c2, 3, 1, g=g) |
|
self.add = shortcut and c1 == c2 |
|
|
|
def forward(self, x): |
|
"""Processes input through two convolutions, optionally adds shortcut if channel dimensions match; input is a |
|
tensor. |
|
""" |
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) |
|
|
|
|
|
class BottleneckCSP(nn.Module): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initializes CSP bottleneck with optional shortcuts; args: ch_in, ch_out, number of repeats, shortcut bool, |
|
groups, expansion. |
|
""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) |
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) |
|
self.cv4 = Conv(2 * c_, c2, 1, 1) |
|
self.bn = nn.BatchNorm2d(2 * c_) |
|
self.act = nn.SiLU() |
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
"""Performs forward pass by applying layers, activation, and concatenation on input x, returning feature- |
|
enhanced output. |
|
""" |
|
y1 = self.cv3(self.m(self.cv1(x))) |
|
y2 = self.cv2(x) |
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) |
|
|
|
|
|
class CrossConv(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): |
|
""" |
|
Initializes CrossConv with downsampling, expanding, and optionally shortcutting; `c1` input, `c2` output |
|
channels. |
|
|
|
Inputs are ch_in, ch_out, kernel, stride, groups, expansion, shortcut. |
|
""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, (1, k), (1, s)) |
|
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) |
|
self.add = shortcut and c1 == c2 |
|
|
|
def forward(self, x): |
|
"""Performs feature sampling, expanding, and applies shortcut if channels match; expects `x` input tensor.""" |
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) |
|
|
|
|
|
class C3(nn.Module): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initializes C3 module with options for channel count, bottleneck repetition, shortcut usage, group |
|
convolutions, and expansion. |
|
""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c1, c_, 1, 1) |
|
self.cv3 = Conv(2 * c_, c2, 1) |
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
"""Performs forward propagation using concatenated outputs from two convolutions and a Bottleneck sequence.""" |
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) |
|
|
|
|
|
class C3x(C3): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initializes C3x module with cross-convolutions, extending C3 with customizable channel dimensions, groups, |
|
and expansion. |
|
""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) |
|
self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n))) |
|
|
|
|
|
class C3TR(C3): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initializes C3 module with TransformerBlock for enhanced feature extraction, accepts channel sizes, shortcut |
|
config, group, and expansion. |
|
""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) |
|
self.m = TransformerBlock(c_, c_, 4, n) |
|
|
|
|
|
class C3SPP(C3): |
|
|
|
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5): |
|
"""Initializes a C3 module with SPP layer for advanced spatial feature extraction, given channel sizes, kernel |
|
sizes, shortcut, group, and expansion ratio. |
|
""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) |
|
self.m = SPP(c_, c_, k) |
|
|
|
|
|
class C3Ghost(C3): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initializes YOLOv5's C3 module with Ghost Bottlenecks for efficient feature extraction.""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) |
|
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) |
|
|
|
|
|
class SPP(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=(5, 9, 13)): |
|
"""Initializes SPP layer with Spatial Pyramid Pooling, ref: https://arxiv.org/abs/1406.4729, args: c1 (input channels), c2 (output channels), k (kernel sizes).""" |
|
super().__init__() |
|
c_ = c1 // 2 |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) |
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) |
|
|
|
def forward(self, x): |
|
"""Applies convolution and max pooling layers to the input tensor `x`, concatenates results, and returns output |
|
tensor. |
|
""" |
|
x = self.cv1(x) |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) |
|
|
|
|
|
class SPPF(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=5): |
|
""" |
|
Initializes YOLOv5 SPPF layer with given channels and kernel size for YOLOv5 model, combining convolution and |
|
max pooling. |
|
|
|
Equivalent to SPP(k=(5, 9, 13)). |
|
""" |
|
super().__init__() |
|
c_ = c1 // 2 |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_ * 4, c2, 1, 1) |
|
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) |
|
|
|
def forward(self, x): |
|
"""Processes input through a series of convolutions and max pooling operations for feature extraction.""" |
|
x = self.cv1(x) |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
y1 = self.m(x) |
|
y2 = self.m(y1) |
|
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) |
|
|
|
|
|
class Focus(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): |
|
"""Initializes Focus module to concentrate width-height info into channel space with configurable convolution |
|
parameters. |
|
""" |
|
super().__init__() |
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act) |
|
|
|
|
|
def forward(self, x): |
|
"""Processes input through Focus mechanism, reshaping (b,c,w,h) to (b,4c,w/2,h/2) then applies convolution.""" |
|
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1)) |
|
|
|
|
|
|
|
class GhostConv(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): |
|
"""Initializes GhostConv with in/out channels, kernel size, stride, groups, and activation; halves out channels |
|
for efficiency. |
|
""" |
|
super().__init__() |
|
c_ = c2 // 2 |
|
self.cv1 = Conv(c1, c_, k, s, None, g, act=act) |
|
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act) |
|
|
|
def forward(self, x): |
|
"""Performs forward pass, concatenating outputs of two convolutions on input `x`: shape (B,C,H,W).""" |
|
y = self.cv1(x) |
|
return torch.cat((y, self.cv2(y)), 1) |
|
|
|
|
|
class GhostBottleneck(nn.Module): |
|
|
|
def __init__(self, c1, c2, k=3, s=1): |
|
"""Initializes GhostBottleneck with ch_in `c1`, ch_out `c2`, kernel size `k`, stride `s`; see https://github.com/huawei-noah/ghostnet.""" |
|
super().__init__() |
|
c_ = c2 // 2 |
|
self.conv = nn.Sequential( |
|
GhostConv(c1, c_, 1, 1), |
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), |
|
GhostConv(c_, c2, 1, 1, act=False), |
|
) |
|
self.shortcut = ( |
|
nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() |
|
) |
|
|
|
def forward(self, x): |
|
"""Processes input through conv and shortcut layers, returning their summed output.""" |
|
return self.conv(x) + self.shortcut(x) |
|
|
|
|
|
class Contract(nn.Module): |
|
|
|
def __init__(self, gain=2): |
|
"""Initializes a layer to contract spatial dimensions (width-height) into channels, e.g., input shape |
|
(1,64,80,80) to (1,256,40,40). |
|
""" |
|
super().__init__() |
|
self.gain = gain |
|
|
|
def forward(self, x): |
|
"""Processes input tensor to expand channel dimensions by contracting spatial dimensions, yielding output shape |
|
`(b, c*s*s, h//s, w//s)`. |
|
""" |
|
b, c, h, w = x.size() |
|
s = self.gain |
|
x = x.view(b, c, h // s, s, w // s, s) |
|
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() |
|
return x.view(b, c * s * s, h // s, w // s) |
|
|
|
|
|
class Expand(nn.Module): |
|
|
|
def __init__(self, gain=2): |
|
""" |
|
Initializes the Expand module to increase spatial dimensions by redistributing channels, with an optional gain |
|
factor. |
|
|
|
Example: x(1,64,80,80) to x(1,16,160,160). |
|
""" |
|
super().__init__() |
|
self.gain = gain |
|
|
|
def forward(self, x): |
|
"""Processes input tensor x to expand spatial dimensions by redistributing channels, requiring C / gain^2 == |
|
0. |
|
""" |
|
b, c, h, w = x.size() |
|
s = self.gain |
|
x = x.view(b, s, s, c // s**2, h, w) |
|
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() |
|
return x.view(b, c // s**2, h * s, w * s) |
|
|
|
|
|
class Concat(nn.Module): |
|
|
|
def __init__(self, dimension=1): |
|
"""Initializes a Concat module to concatenate tensors along a specified dimension.""" |
|
super().__init__() |
|
self.d = dimension |
|
|
|
def forward(self, x): |
|
"""Concatenates a list of tensors along a specified dimension; `x` is a list of tensors, `dimension` is an |
|
int. |
|
""" |
|
return torch.cat(x, self.d) |
|
|
|
|
|
class DetectMultiBackend(nn.Module): |
|
|
|
def __init__(self, weights="yolov5s.pt", device=torch.device("cpu"), dnn=False, data=None, fp16=False, fuse=True): |
|
"""Initializes DetectMultiBackend with support for various inference backends, including PyTorch and ONNX.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from models.experimental import attempt_download, attempt_load |
|
|
|
super().__init__() |
|
w = str(weights[0] if isinstance(weights, list) else weights) |
|
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w) |
|
fp16 &= pt or jit or onnx or engine or triton |
|
nhwc = coreml or saved_model or pb or tflite or edgetpu |
|
stride = 32 |
|
cuda = torch.cuda.is_available() and device.type != "cpu" |
|
if not (pt or triton): |
|
w = attempt_download(w) |
|
|
|
if pt: |
|
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse) |
|
stride = max(int(model.stride.max()), 32) |
|
names = model.module.names if hasattr(model, "module") else model.names |
|
model.half() if fp16 else model.float() |
|
self.model = model |
|
elif jit: |
|
LOGGER.info(f"Loading {w} for TorchScript inference...") |
|
extra_files = {"config.txt": ""} |
|
model = torch.jit.load(w, _extra_files=extra_files, map_location=device) |
|
model.half() if fp16 else model.float() |
|
if extra_files["config.txt"]: |
|
d = json.loads( |
|
extra_files["config.txt"], |
|
object_hook=lambda d: {int(k) if k.isdigit() else k: v for k, v in d.items()}, |
|
) |
|
stride, names = int(d["stride"]), d["names"] |
|
elif dnn: |
|
LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...") |
|
check_requirements("opencv-python>=4.5.4") |
|
net = cv2.dnn.readNetFromONNX(w) |
|
elif onnx: |
|
LOGGER.info(f"Loading {w} for ONNX Runtime inference...") |
|
check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime")) |
|
import onnxruntime |
|
|
|
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"] |
|
session = onnxruntime.InferenceSession(w, providers=providers) |
|
output_names = [x.name for x in session.get_outputs()] |
|
meta = session.get_modelmeta().custom_metadata_map |
|
if "stride" in meta: |
|
stride, names = int(meta["stride"]), eval(meta["names"]) |
|
elif xml: |
|
LOGGER.info(f"Loading {w} for OpenVINO inference...") |
|
check_requirements("openvino>=2023.0") |
|
from openvino.runtime import Core, Layout, get_batch |
|
|
|
core = Core() |
|
if not Path(w).is_file(): |
|
w = next(Path(w).glob("*.xml")) |
|
ov_model = core.read_model(model=w, weights=Path(w).with_suffix(".bin")) |
|
if ov_model.get_parameters()[0].get_layout().empty: |
|
ov_model.get_parameters()[0].set_layout(Layout("NCHW")) |
|
batch_dim = get_batch(ov_model) |
|
if batch_dim.is_static: |
|
batch_size = batch_dim.get_length() |
|
ov_compiled_model = core.compile_model(ov_model, device_name="AUTO") |
|
stride, names = self._load_metadata(Path(w).with_suffix(".yaml")) |
|
elif engine: |
|
LOGGER.info(f"Loading {w} for TensorRT inference...") |
|
import tensorrt as trt |
|
|
|
check_version(trt.__version__, "7.0.0", hard=True) |
|
if device.type == "cpu": |
|
device = torch.device("cuda:0") |
|
Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr")) |
|
logger = trt.Logger(trt.Logger.INFO) |
|
with open(w, "rb") as f, trt.Runtime(logger) as runtime: |
|
model = runtime.deserialize_cuda_engine(f.read()) |
|
context = model.create_execution_context() |
|
bindings = OrderedDict() |
|
output_names = [] |
|
fp16 = False |
|
dynamic = False |
|
is_trt10 = not hasattr(model, "num_bindings") |
|
num = range(model.num_io_tensors) if is_trt10 else range(model.num_bindings) |
|
for i in num: |
|
if is_trt10: |
|
name = model.get_tensor_name(i) |
|
dtype = trt.nptype(model.get_tensor_dtype(name)) |
|
is_input = model.get_tensor_mode(name) == trt.TensorIOMode.INPUT |
|
if is_input: |
|
if -1 in tuple(model.get_tensor_shape(name)): |
|
dynamic = True |
|
context.set_input_shape(name, tuple(model.get_profile_shape(name, 0)[2])) |
|
if dtype == np.float16: |
|
fp16 = True |
|
else: |
|
output_names.append(name) |
|
shape = tuple(context.get_tensor_shape(name)) |
|
else: |
|
name = model.get_binding_name(i) |
|
dtype = trt.nptype(model.get_binding_dtype(i)) |
|
if model.binding_is_input(i): |
|
if -1 in tuple(model.get_binding_shape(i)): |
|
dynamic = True |
|
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2])) |
|
if dtype == np.float16: |
|
fp16 = True |
|
else: |
|
output_names.append(name) |
|
shape = tuple(context.get_binding_shape(i)) |
|
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device) |
|
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr())) |
|
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items()) |
|
batch_size = bindings["images"].shape[0] |
|
elif coreml: |
|
LOGGER.info(f"Loading {w} for CoreML inference...") |
|
import coremltools as ct |
|
|
|
model = ct.models.MLModel(w) |
|
elif saved_model: |
|
LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...") |
|
import tensorflow as tf |
|
|
|
keras = False |
|
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w) |
|
elif pb: |
|
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...") |
|
import tensorflow as tf |
|
|
|
def wrap_frozen_graph(gd, inputs, outputs): |
|
"""Wraps a TensorFlow GraphDef for inference, returning a pruned function.""" |
|
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) |
|
ge = x.graph.as_graph_element |
|
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs)) |
|
|
|
def gd_outputs(gd): |
|
"""Generates a sorted list of graph outputs excluding NoOp nodes and inputs, formatted as '<name>:0'.""" |
|
name_list, input_list = [], [] |
|
for node in gd.node: |
|
name_list.append(node.name) |
|
input_list.extend(node.input) |
|
return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp")) |
|
|
|
gd = tf.Graph().as_graph_def() |
|
with open(w, "rb") as f: |
|
gd.ParseFromString(f.read()) |
|
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd)) |
|
elif tflite or edgetpu: |
|
try: |
|
from tflite_runtime.interpreter import Interpreter, load_delegate |
|
except ImportError: |
|
import tensorflow as tf |
|
|
|
Interpreter, load_delegate = ( |
|
tf.lite.Interpreter, |
|
tf.lite.experimental.load_delegate, |
|
) |
|
if edgetpu: |
|
LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...") |
|
delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[ |
|
platform.system() |
|
] |
|
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)]) |
|
else: |
|
LOGGER.info(f"Loading {w} for TensorFlow Lite inference...") |
|
interpreter = Interpreter(model_path=w) |
|
interpreter.allocate_tensors() |
|
input_details = interpreter.get_input_details() |
|
output_details = interpreter.get_output_details() |
|
|
|
with contextlib.suppress(zipfile.BadZipFile): |
|
with zipfile.ZipFile(w, "r") as model: |
|
meta_file = model.namelist()[0] |
|
meta = ast.literal_eval(model.read(meta_file).decode("utf-8")) |
|
stride, names = int(meta["stride"]), meta["names"] |
|
elif tfjs: |
|
raise NotImplementedError("ERROR: YOLOv5 TF.js inference is not supported") |
|
elif paddle: |
|
LOGGER.info(f"Loading {w} for PaddlePaddle inference...") |
|
check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle") |
|
import paddle.inference as pdi |
|
|
|
if not Path(w).is_file(): |
|
w = next(Path(w).rglob("*.pdmodel")) |
|
weights = Path(w).with_suffix(".pdiparams") |
|
config = pdi.Config(str(w), str(weights)) |
|
if cuda: |
|
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0) |
|
predictor = pdi.create_predictor(config) |
|
input_handle = predictor.get_input_handle(predictor.get_input_names()[0]) |
|
output_names = predictor.get_output_names() |
|
elif triton: |
|
LOGGER.info(f"Using {w} as Triton Inference Server...") |
|
check_requirements("tritonclient[all]") |
|
from utils.triton import TritonRemoteModel |
|
|
|
model = TritonRemoteModel(url=w) |
|
nhwc = model.runtime.startswith("tensorflow") |
|
else: |
|
raise NotImplementedError(f"ERROR: {w} is not a supported format") |
|
|
|
|
|
if "names" not in locals(): |
|
names = yaml_load(data)["names"] if data else {i: f"class{i}" for i in range(999)} |
|
if names[0] == "n01440764" and len(names) == 1000: |
|
names = yaml_load(ROOT / "data/ImageNet.yaml")["names"] |
|
|
|
self.__dict__.update(locals()) |
|
|
|
def forward(self, im, augment=False, visualize=False): |
|
"""Performs YOLOv5 inference on input images with options for augmentation and visualization.""" |
|
b, ch, h, w = im.shape |
|
if self.fp16 and im.dtype != torch.float16: |
|
im = im.half() |
|
if self.nhwc: |
|
im = im.permute(0, 2, 3, 1) |
|
|
|
if self.pt: |
|
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im) |
|
elif self.jit: |
|
y = self.model(im) |
|
elif self.dnn: |
|
im = im.cpu().numpy() |
|
self.net.setInput(im) |
|
y = self.net.forward() |
|
elif self.onnx: |
|
im = im.cpu().numpy() |
|
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im}) |
|
elif self.xml: |
|
im = im.cpu().numpy() |
|
y = list(self.ov_compiled_model(im).values()) |
|
elif self.engine: |
|
if self.dynamic and im.shape != self.bindings["images"].shape: |
|
i = self.model.get_binding_index("images") |
|
self.context.set_binding_shape(i, im.shape) |
|
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape) |
|
for name in self.output_names: |
|
i = self.model.get_binding_index(name) |
|
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i))) |
|
s = self.bindings["images"].shape |
|
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}" |
|
self.binding_addrs["images"] = int(im.data_ptr()) |
|
self.context.execute_v2(list(self.binding_addrs.values())) |
|
y = [self.bindings[x].data for x in sorted(self.output_names)] |
|
elif self.coreml: |
|
im = im.cpu().numpy() |
|
im = Image.fromarray((im[0] * 255).astype("uint8")) |
|
|
|
y = self.model.predict({"image": im}) |
|
if "confidence" in y: |
|
box = xywh2xyxy(y["coordinates"] * [[w, h, w, h]]) |
|
conf, cls = y["confidence"].max(1), y["confidence"].argmax(1).astype(np.float) |
|
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1) |
|
else: |
|
y = list(reversed(y.values())) |
|
elif self.paddle: |
|
im = im.cpu().numpy().astype(np.float32) |
|
self.input_handle.copy_from_cpu(im) |
|
self.predictor.run() |
|
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names] |
|
elif self.triton: |
|
y = self.model(im) |
|
else: |
|
im = im.cpu().numpy() |
|
if self.saved_model: |
|
y = self.model(im, training=False) if self.keras else self.model(im) |
|
elif self.pb: |
|
y = self.frozen_func(x=self.tf.constant(im)) |
|
else: |
|
input = self.input_details[0] |
|
int8 = input["dtype"] == np.uint8 |
|
if int8: |
|
scale, zero_point = input["quantization"] |
|
im = (im / scale + zero_point).astype(np.uint8) |
|
self.interpreter.set_tensor(input["index"], im) |
|
self.interpreter.invoke() |
|
y = [] |
|
for output in self.output_details: |
|
x = self.interpreter.get_tensor(output["index"]) |
|
if int8: |
|
scale, zero_point = output["quantization"] |
|
x = (x.astype(np.float32) - zero_point) * scale |
|
y.append(x) |
|
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y] |
|
y[0][..., :4] *= [w, h, w, h] |
|
|
|
if isinstance(y, (list, tuple)): |
|
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y] |
|
else: |
|
return self.from_numpy(y) |
|
|
|
def from_numpy(self, x): |
|
"""Converts a NumPy array to a torch tensor, maintaining device compatibility.""" |
|
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x |
|
|
|
def warmup(self, imgsz=(1, 3, 640, 640)): |
|
"""Performs a single inference warmup to initialize model weights, accepting an `imgsz` tuple for image size.""" |
|
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton |
|
if any(warmup_types) and (self.device.type != "cpu" or self.triton): |
|
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) |
|
for _ in range(2 if self.jit else 1): |
|
self.forward(im) |
|
|
|
@staticmethod |
|
def _model_type(p="path/to/model.pt"): |
|
""" |
|
Determines model type from file path or URL, supporting various export formats. |
|
|
|
Example: path='path/to/model.onnx' -> type=onnx |
|
""" |
|
|
|
from export import export_formats |
|
from utils.downloads import is_url |
|
|
|
sf = list(export_formats().Suffix) |
|
if not is_url(p, check=False): |
|
check_suffix(p, sf) |
|
url = urlparse(p) |
|
types = [s in Path(p).name for s in sf] |
|
types[8] &= not types[9] |
|
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc]) |
|
return types + [triton] |
|
|
|
@staticmethod |
|
def _load_metadata(f=Path("path/to/meta.yaml")): |
|
"""Loads metadata from a YAML file, returning strides and names if the file exists, otherwise `None`.""" |
|
if f.exists(): |
|
d = yaml_load(f) |
|
return d["stride"], d["names"] |
|
return None, None |
|
|
|
|
|
class AutoShape(nn.Module): |
|
|
|
conf = 0.25 |
|
iou = 0.45 |
|
agnostic = False |
|
multi_label = False |
|
classes = None |
|
max_det = 1000 |
|
amp = False |
|
|
|
def __init__(self, model, verbose=True): |
|
"""Initializes YOLOv5 model for inference, setting up attributes and preparing model for evaluation.""" |
|
super().__init__() |
|
if verbose: |
|
LOGGER.info("Adding AutoShape... ") |
|
copy_attr(self, model, include=("yaml", "nc", "hyp", "names", "stride", "abc"), exclude=()) |
|
self.dmb = isinstance(model, DetectMultiBackend) |
|
self.pt = not self.dmb or model.pt |
|
self.model = model.eval() |
|
if self.pt: |
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] |
|
m.inplace = False |
|
m.export = True |
|
|
|
def _apply(self, fn): |
|
""" |
|
Applies to(), cpu(), cuda(), half() etc. |
|
|
|
to model tensors excluding parameters or registered buffers. |
|
""" |
|
self = super()._apply(fn) |
|
if self.pt: |
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] |
|
m.stride = fn(m.stride) |
|
m.grid = list(map(fn, m.grid)) |
|
if isinstance(m.anchor_grid, list): |
|
m.anchor_grid = list(map(fn, m.anchor_grid)) |
|
return self |
|
|
|
@smart_inference_mode() |
|
def forward(self, ims, size=640, augment=False, profile=False): |
|
""" |
|
Performs inference on inputs with optional augment & profiling. |
|
|
|
Supports various formats including file, URI, OpenCV, PIL, numpy, torch. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dt = (Profile(), Profile(), Profile()) |
|
with dt[0]: |
|
if isinstance(size, int): |
|
size = (size, size) |
|
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) |
|
autocast = self.amp and (p.device.type != "cpu") |
|
if isinstance(ims, torch.Tensor): |
|
with amp.autocast(autocast): |
|
return self.model(ims.to(p.device).type_as(p), augment=augment) |
|
|
|
|
|
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) |
|
shape0, shape1, files = [], [], [] |
|
for i, im in enumerate(ims): |
|
f = f"image{i}" |
|
if isinstance(im, (str, Path)): |
|
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im), im |
|
im = np.asarray(exif_transpose(im)) |
|
elif isinstance(im, Image.Image): |
|
im, f = np.asarray(exif_transpose(im)), getattr(im, "filename", f) or f |
|
files.append(Path(f).with_suffix(".jpg").name) |
|
if im.shape[0] < 5: |
|
im = im.transpose((1, 2, 0)) |
|
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) |
|
s = im.shape[:2] |
|
shape0.append(s) |
|
g = max(size) / max(s) |
|
shape1.append([int(y * g) for y in s]) |
|
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) |
|
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] |
|
x = [letterbox(im, shape1, auto=False)[0] for im in ims] |
|
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) |
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 |
|
|
|
with amp.autocast(autocast): |
|
|
|
with dt[1]: |
|
y = self.model(x, augment=augment) |
|
|
|
|
|
with dt[2]: |
|
y = non_max_suppression( |
|
y if self.dmb else y[0], |
|
self.conf, |
|
self.iou, |
|
self.classes, |
|
self.agnostic, |
|
self.multi_label, |
|
max_det=self.max_det, |
|
) |
|
for i in range(n): |
|
scale_boxes(shape1, y[i][:, :4], shape0[i]) |
|
|
|
return Detections(ims, y, files, dt, self.names, x.shape) |
|
|
|
|
|
class Detections: |
|
|
|
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None): |
|
"""Initializes the YOLOv5 Detections class with image info, predictions, filenames, timing and normalization.""" |
|
super().__init__() |
|
d = pred[0].device |
|
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] |
|
self.ims = ims |
|
self.pred = pred |
|
self.names = names |
|
self.files = files |
|
self.times = times |
|
self.xyxy = pred |
|
self.xywh = [xyxy2xywh(x) for x in pred] |
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] |
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] |
|
self.n = len(self.pred) |
|
self.t = tuple(x.t / self.n * 1e3 for x in times) |
|
self.s = tuple(shape) |
|
|
|
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path("")): |
|
"""Executes model predictions, displaying and/or saving outputs with optional crops and labels.""" |
|
s, crops = "", [] |
|
for i, (im, pred) in enumerate(zip(self.ims, self.pred)): |
|
s += f"\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} " |
|
if pred.shape[0]: |
|
for c in pred[:, -1].unique(): |
|
n = (pred[:, -1] == c).sum() |
|
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " |
|
s = s.rstrip(", ") |
|
if show or save or render or crop: |
|
annotator = Annotator(im, example=str(self.names)) |
|
for *box, conf, cls in reversed(pred): |
|
label = f"{self.names[int(cls)]} {conf:.2f}" |
|
if crop: |
|
file = save_dir / "crops" / self.names[int(cls)] / self.files[i] if save else None |
|
crops.append( |
|
{ |
|
"box": box, |
|
"conf": conf, |
|
"cls": cls, |
|
"label": label, |
|
"im": save_one_box(box, im, file=file, save=save), |
|
} |
|
) |
|
else: |
|
annotator.box_label(box, label if labels else "", color=colors(cls)) |
|
im = annotator.im |
|
else: |
|
s += "(no detections)" |
|
|
|
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im |
|
if show: |
|
if is_jupyter(): |
|
from IPython.display import display |
|
|
|
display(im) |
|
else: |
|
im.show(self.files[i]) |
|
if save: |
|
f = self.files[i] |
|
im.save(save_dir / f) |
|
if i == self.n - 1: |
|
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}") |
|
if render: |
|
self.ims[i] = np.asarray(im) |
|
if pprint: |
|
s = s.lstrip("\n") |
|
return f"{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}" % self.t |
|
if crop: |
|
if save: |
|
LOGGER.info(f"Saved results to {save_dir}\n") |
|
return crops |
|
|
|
@TryExcept("Showing images is not supported in this environment") |
|
def show(self, labels=True): |
|
""" |
|
Displays detection results with optional labels. |
|
|
|
Usage: show(labels=True) |
|
""" |
|
self._run(show=True, labels=labels) |
|
|
|
def save(self, labels=True, save_dir="runs/detect/exp", exist_ok=False): |
|
""" |
|
Saves detection results with optional labels to a specified directory. |
|
|
|
Usage: save(labels=True, save_dir='runs/detect/exp', exist_ok=False) |
|
""" |
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) |
|
self._run(save=True, labels=labels, save_dir=save_dir) |
|
|
|
def crop(self, save=True, save_dir="runs/detect/exp", exist_ok=False): |
|
""" |
|
Crops detection results, optionally saves them to a directory. |
|
|
|
Args: save (bool), save_dir (str), exist_ok (bool). |
|
""" |
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None |
|
return self._run(crop=True, save=save, save_dir=save_dir) |
|
|
|
def render(self, labels=True): |
|
"""Renders detection results with optional labels on images; args: labels (bool) indicating label inclusion.""" |
|
self._run(render=True, labels=labels) |
|
return self.ims |
|
|
|
def pandas(self): |
|
""" |
|
Returns detections as pandas DataFrames for various box formats (xyxy, xyxyn, xywh, xywhn). |
|
|
|
Example: print(results.pandas().xyxy[0]). |
|
""" |
|
new = copy(self) |
|
ca = "xmin", "ymin", "xmax", "ymax", "confidence", "class", "name" |
|
cb = "xcenter", "ycenter", "width", "height", "confidence", "class", "name" |
|
for k, c in zip(["xyxy", "xyxyn", "xywh", "xywhn"], [ca, ca, cb, cb]): |
|
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] |
|
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) |
|
return new |
|
|
|
def tolist(self): |
|
""" |
|
Converts a Detections object into a list of individual detection results for iteration. |
|
|
|
Example: for result in results.tolist(): |
|
""" |
|
r = range(self.n) |
|
return [ |
|
Detections( |
|
[self.ims[i]], |
|
[self.pred[i]], |
|
[self.files[i]], |
|
self.times, |
|
self.names, |
|
self.s, |
|
) |
|
for i in r |
|
] |
|
|
|
def print(self): |
|
"""Logs the string representation of the current object's state via the LOGGER.""" |
|
LOGGER.info(self.__str__()) |
|
|
|
def __len__(self): |
|
"""Returns the number of results stored, overrides the default len(results).""" |
|
return self.n |
|
|
|
def __str__(self): |
|
"""Returns a string representation of the model's results, suitable for printing, overrides default |
|
print(results). |
|
""" |
|
return self._run(pprint=True) |
|
|
|
def __repr__(self): |
|
"""Returns a string representation of the YOLOv5 object, including its class and formatted results.""" |
|
return f"YOLOv5 {self.__class__} instance\n" + self.__str__() |
|
|
|
|
|
class Proto(nn.Module): |
|
|
|
def __init__(self, c1, c_=256, c2=32): |
|
"""Initializes YOLOv5 Proto module for segmentation with input, proto, and mask channels configuration.""" |
|
super().__init__() |
|
self.cv1 = Conv(c1, c_, k=3) |
|
self.upsample = nn.Upsample(scale_factor=2, mode="nearest") |
|
self.cv2 = Conv(c_, c_, k=3) |
|
self.cv3 = Conv(c_, c2) |
|
|
|
def forward(self, x): |
|
"""Performs a forward pass using convolutional layers and upsampling on input tensor `x`.""" |
|
return self.cv3(self.cv2(self.upsample(self.cv1(x)))) |
|
|
|
|
|
class Classify(nn.Module): |
|
|
|
def __init__( |
|
self, c1, c2, k=1, s=1, p=None, g=1, dropout_p=0.0 |
|
): |
|
"""Initializes YOLOv5 classification head with convolution, pooling, and dropout layers for input to output |
|
channel transformation. |
|
""" |
|
super().__init__() |
|
c_ = 1280 |
|
self.conv = Conv(c1, c_, k, s, autopad(k, p), g) |
|
self.pool = nn.AdaptiveAvgPool2d(1) |
|
self.drop = nn.Dropout(p=dropout_p, inplace=True) |
|
self.linear = nn.Linear(c_, c2) |
|
|
|
def forward(self, x): |
|
"""Processes input through conv, pool, drop, and linear layers; supports list concatenation input.""" |
|
if isinstance(x, list): |
|
x = torch.cat(x, 1) |
|
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1))) |
|
|