|
|
|
"""Experimental modules.""" |
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from yolov5.utils.downloads import attempt_download |
|
|
|
|
|
class Sum(nn.Module): |
|
"""Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070.""" |
|
|
|
def __init__(self, n, weight=False): |
|
"""Initializes a module to sum outputs of layers with number of inputs `n` and optional weighting, supporting 2+ |
|
inputs. |
|
""" |
|
super().__init__() |
|
self.weight = weight |
|
self.iter = range(n - 1) |
|
if weight: |
|
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) |
|
|
|
def forward(self, x): |
|
"""Processes input through a customizable weighted sum of `n` inputs, optionally applying learned weights.""" |
|
y = x[0] |
|
if self.weight: |
|
w = torch.sigmoid(self.w) * 2 |
|
for i in self.iter: |
|
y = y + x[i + 1] * w[i] |
|
else: |
|
for i in self.iter: |
|
y = y + x[i + 1] |
|
return y |
|
|
|
|
|
class MixConv2d(nn.Module): |
|
"""Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595.""" |
|
|
|
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): |
|
"""Initializes MixConv2d with mixed depth-wise convolutional layers, taking input and output channels (c1, c2), |
|
kernel sizes (k), stride (s), and channel distribution strategy (equal_ch). |
|
""" |
|
super().__init__() |
|
n = len(k) |
|
if equal_ch: |
|
i = torch.linspace(0, n - 1e-6, c2).floor() |
|
c_ = [(i == g).sum() for g in range(n)] |
|
else: |
|
b = [c2] + [0] * n |
|
a = np.eye(n + 1, n, k=-1) |
|
a -= np.roll(a, 1, axis=1) |
|
a *= np.array(k) ** 2 |
|
a[0] = 1 |
|
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() |
|
|
|
self.m = nn.ModuleList( |
|
[nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)] |
|
) |
|
self.bn = nn.BatchNorm2d(c2) |
|
self.act = nn.SiLU() |
|
|
|
def forward(self, x): |
|
"""Performs forward pass by applying SiLU activation on batch-normalized concatenated convolutional layer |
|
outputs. |
|
""" |
|
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) |
|
|
|
|
|
class Ensemble(nn.ModuleList): |
|
"""Ensemble of models.""" |
|
|
|
def __init__(self): |
|
"""Initializes an ensemble of models to be used for aggregated predictions.""" |
|
super().__init__() |
|
|
|
def forward(self, x, augment=False, profile=False, visualize=False): |
|
"""Performs forward pass aggregating outputs from an ensemble of models..""" |
|
y = [module(x, augment, profile, visualize)[0] for module in self] |
|
|
|
|
|
y = torch.cat(y, 1) |
|
return y, None |
|
|
|
|
|
def attempt_load(weights, device=None, inplace=True, fuse=True): |
|
""" |
|
Loads and fuses an ensemble or single YOLOv5 model from weights, handling device placement and model adjustments. |
|
|
|
Example inputs: weights=[a,b,c] or a single model weights=[a] or weights=a. |
|
""" |
|
from yolov5.models.yolo import Detect, Model |
|
|
|
model = Ensemble() |
|
for w in weights if isinstance(weights, list) else [weights]: |
|
ckpt = torch.load(attempt_download(w), map_location="cpu") |
|
ckpt = (ckpt.get("ema") or ckpt["model"]).to(device).float() |
|
|
|
|
|
if not hasattr(ckpt, "stride"): |
|
ckpt.stride = torch.tensor([32.0]) |
|
if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)): |
|
ckpt.names = dict(enumerate(ckpt.names)) |
|
|
|
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, "fuse") else ckpt.eval()) |
|
|
|
|
|
for m in model.modules(): |
|
t = type(m) |
|
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model): |
|
m.inplace = inplace |
|
if t is Detect and not isinstance(m.anchor_grid, list): |
|
delattr(m, "anchor_grid") |
|
setattr(m, "anchor_grid", [torch.zeros(1)] * m.nl) |
|
elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"): |
|
m.recompute_scale_factor = None |
|
|
|
|
|
if len(model) == 1: |
|
return model[-1] |
|
|
|
|
|
print(f"Ensemble created with {weights}\n") |
|
for k in "names", "nc", "yaml": |
|
setattr(model, k, getattr(model[0], k)) |
|
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride |
|
assert all(model[0].nc == m.nc for m in model), f"Models have different class counts: {[m.nc for m in model]}" |
|
return model |
|
|