|
|
|
""" |
|
TensorFlow, Keras and TFLite versions of YOLOv5 |
|
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127 |
|
|
|
Usage: |
|
$ python models/tf.py --weights yolov5s.pt |
|
|
|
Export: |
|
$ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs |
|
""" |
|
|
|
import argparse |
|
import sys |
|
from copy import deepcopy |
|
from pathlib import Path |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[1] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
|
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
import torch |
|
import torch.nn as nn |
|
from tensorflow import keras |
|
|
|
from models.common import ( |
|
C3, |
|
SPP, |
|
SPPF, |
|
Bottleneck, |
|
BottleneckCSP, |
|
C3x, |
|
Concat, |
|
Conv, |
|
CrossConv, |
|
DWConv, |
|
DWConvTranspose2d, |
|
Focus, |
|
autopad, |
|
) |
|
from models.experimental import MixConv2d, attempt_load |
|
from models.yolo import Detect, Segment |
|
from utils.activations import SiLU |
|
from utils.general import LOGGER, make_divisible, print_args |
|
|
|
|
|
class TFBN(keras.layers.Layer): |
|
|
|
def __init__(self, w=None): |
|
"""Initializes a TensorFlow BatchNormalization layer with optional pretrained weights.""" |
|
super().__init__() |
|
self.bn = keras.layers.BatchNormalization( |
|
beta_initializer=keras.initializers.Constant(w.bias.numpy()), |
|
gamma_initializer=keras.initializers.Constant(w.weight.numpy()), |
|
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()), |
|
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()), |
|
epsilon=w.eps, |
|
) |
|
|
|
def call(self, inputs): |
|
"""Applies batch normalization to the inputs.""" |
|
return self.bn(inputs) |
|
|
|
|
|
class TFPad(keras.layers.Layer): |
|
|
|
def __init__(self, pad): |
|
""" |
|
Initializes a padding layer for spatial dimensions 1 and 2 with specified padding, supporting both int and tuple |
|
inputs. |
|
|
|
Inputs are |
|
""" |
|
super().__init__() |
|
if isinstance(pad, int): |
|
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]]) |
|
else: |
|
self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]]) |
|
|
|
def call(self, inputs): |
|
"""Pads input tensor with zeros using specified padding, suitable for int and tuple pad dimensions.""" |
|
return tf.pad(inputs, self.pad, mode="constant", constant_values=0) |
|
|
|
|
|
class TFConv(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): |
|
""" |
|
Initializes a standard convolution layer with optional batch normalization and activation; supports only |
|
group=1. |
|
|
|
Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups. |
|
""" |
|
super().__init__() |
|
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" |
|
|
|
|
|
conv = keras.layers.Conv2D( |
|
filters=c2, |
|
kernel_size=k, |
|
strides=s, |
|
padding="SAME" if s == 1 else "VALID", |
|
use_bias=not hasattr(w, "bn"), |
|
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), |
|
bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()), |
|
) |
|
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) |
|
self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity |
|
self.act = activations(w.act) if act else tf.identity |
|
|
|
def call(self, inputs): |
|
"""Applies convolution, batch normalization, and activation function to input tensors.""" |
|
return self.act(self.bn(self.conv(inputs))) |
|
|
|
|
|
class TFDWConv(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None): |
|
""" |
|
Initializes a depthwise convolution layer with optional batch normalization and activation for TensorFlow |
|
models. |
|
|
|
Input are ch_in, ch_out, weights, kernel, stride, padding, groups. |
|
""" |
|
super().__init__() |
|
assert c2 % c1 == 0, f"TFDWConv() output={c2} must be a multiple of input={c1} channels" |
|
conv = keras.layers.DepthwiseConv2D( |
|
kernel_size=k, |
|
depth_multiplier=c2 // c1, |
|
strides=s, |
|
padding="SAME" if s == 1 else "VALID", |
|
use_bias=not hasattr(w, "bn"), |
|
depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), |
|
bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()), |
|
) |
|
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) |
|
self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity |
|
self.act = activations(w.act) if act else tf.identity |
|
|
|
def call(self, inputs): |
|
"""Applies convolution, batch normalization, and activation function to input tensors.""" |
|
return self.act(self.bn(self.conv(inputs))) |
|
|
|
|
|
class TFDWConvTranspose2d(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None): |
|
""" |
|
Initializes depthwise ConvTranspose2D layer with specific channel, kernel, stride, and padding settings. |
|
|
|
Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups. |
|
""" |
|
super().__init__() |
|
assert c1 == c2, f"TFDWConv() output={c2} must be equal to input={c1} channels" |
|
assert k == 4 and p1 == 1, "TFDWConv() only valid for k=4 and p1=1" |
|
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy() |
|
self.c1 = c1 |
|
self.conv = [ |
|
keras.layers.Conv2DTranspose( |
|
filters=1, |
|
kernel_size=k, |
|
strides=s, |
|
padding="VALID", |
|
output_padding=p2, |
|
use_bias=True, |
|
kernel_initializer=keras.initializers.Constant(weight[..., i : i + 1]), |
|
bias_initializer=keras.initializers.Constant(bias[i]), |
|
) |
|
for i in range(c1) |
|
] |
|
|
|
def call(self, inputs): |
|
"""Processes input through parallel convolutions and concatenates results, trimming border pixels.""" |
|
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1] |
|
|
|
|
|
class TFFocus(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): |
|
""" |
|
Initializes TFFocus layer to focus width and height information into channel space with custom convolution |
|
parameters. |
|
|
|
Inputs are ch_in, ch_out, kernel, stride, padding, groups. |
|
""" |
|
super().__init__() |
|
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv) |
|
|
|
def call(self, inputs): |
|
""" |
|
Performs pixel shuffling and convolution on input tensor, downsampling by 2 and expanding channels by 4. |
|
|
|
Example x(b,w,h,c) -> y(b,w/2,h/2,4c). |
|
""" |
|
inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]] |
|
return self.conv(tf.concat(inputs, 3)) |
|
|
|
|
|
class TFBottleneck(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): |
|
""" |
|
Initializes a standard bottleneck layer for TensorFlow models, expanding and contracting channels with optional |
|
shortcut. |
|
|
|
Arguments are ch_in, ch_out, shortcut, groups, expansion. |
|
""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) |
|
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2) |
|
self.add = shortcut and c1 == c2 |
|
|
|
def call(self, inputs): |
|
"""Performs forward pass; if shortcut is True & input/output channels match, adds input to the convolution |
|
result. |
|
""" |
|
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) |
|
|
|
|
|
class TFCrossConv(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None): |
|
"""Initializes cross convolution layer with optional expansion, grouping, and shortcut addition capabilities.""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1) |
|
self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2) |
|
self.add = shortcut and c1 == c2 |
|
|
|
def call(self, inputs): |
|
"""Passes input through two convolutions optionally adding the input if channel dimensions match.""" |
|
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) |
|
|
|
|
|
class TFConv2d(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None): |
|
"""Initializes a TensorFlow 2D convolution layer, mimicking PyTorch's nn.Conv2D functionality for given filter |
|
sizes and stride. |
|
""" |
|
super().__init__() |
|
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" |
|
self.conv = keras.layers.Conv2D( |
|
filters=c2, |
|
kernel_size=k, |
|
strides=s, |
|
padding="VALID", |
|
use_bias=bias, |
|
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()), |
|
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, |
|
) |
|
|
|
def call(self, inputs): |
|
"""Applies a convolution operation to the inputs and returns the result.""" |
|
return self.conv(inputs) |
|
|
|
|
|
class TFBottleneckCSP(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): |
|
""" |
|
Initializes CSP bottleneck layer with specified channel sizes, count, shortcut option, groups, and expansion |
|
ratio. |
|
|
|
Inputs are ch_in, ch_out, number, shortcut, groups, expansion. |
|
""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) |
|
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2) |
|
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3) |
|
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4) |
|
self.bn = TFBN(w.bn) |
|
self.act = lambda x: keras.activations.swish(x) |
|
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) |
|
|
|
def call(self, inputs): |
|
"""Processes input through the model layers, concatenates, normalizes, activates, and reduces the output |
|
dimensions. |
|
""" |
|
y1 = self.cv3(self.m(self.cv1(inputs))) |
|
y2 = self.cv2(inputs) |
|
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3)))) |
|
|
|
|
|
class TFC3(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): |
|
""" |
|
Initializes CSP Bottleneck with 3 convolutions, supporting optional shortcuts and group convolutions. |
|
|
|
Inputs are ch_in, ch_out, number, shortcut, groups, expansion. |
|
""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) |
|
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) |
|
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) |
|
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) |
|
|
|
def call(self, inputs): |
|
""" |
|
Processes input through a sequence of transformations for object detection (YOLOv5). |
|
|
|
See https://github.com/ultralytics/yolov5. |
|
""" |
|
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) |
|
|
|
|
|
class TFC3x(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): |
|
""" |
|
Initializes layer with cross-convolutions for enhanced feature extraction in object detection models. |
|
|
|
Inputs are ch_in, ch_out, number, shortcut, groups, expansion. |
|
""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) |
|
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) |
|
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) |
|
self.m = keras.Sequential( |
|
[TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)] |
|
) |
|
|
|
def call(self, inputs): |
|
"""Processes input through cascaded convolutions and merges features, returning the final tensor output.""" |
|
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) |
|
|
|
|
|
class TFSPP(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, k=(5, 9, 13), w=None): |
|
"""Initializes a YOLOv3-SPP layer with specific input/output channels and kernel sizes for pooling.""" |
|
super().__init__() |
|
c_ = c1 // 2 |
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) |
|
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2) |
|
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding="SAME") for x in k] |
|
|
|
def call(self, inputs): |
|
"""Processes input through two TFConv layers and concatenates with max-pooled outputs at intermediate stage.""" |
|
x = self.cv1(inputs) |
|
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3)) |
|
|
|
|
|
class TFSPPF(keras.layers.Layer): |
|
|
|
def __init__(self, c1, c2, k=5, w=None): |
|
"""Initializes a fast spatial pyramid pooling layer with customizable in/out channels, kernel size, and |
|
weights. |
|
""" |
|
super().__init__() |
|
c_ = c1 // 2 |
|
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) |
|
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2) |
|
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding="SAME") |
|
|
|
def call(self, inputs): |
|
"""Executes the model's forward pass, concatenating input features with three max-pooled versions before final |
|
convolution. |
|
""" |
|
x = self.cv1(inputs) |
|
y1 = self.m(x) |
|
y2 = self.m(y1) |
|
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3)) |
|
|
|
|
|
class TFDetect(keras.layers.Layer): |
|
|
|
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): |
|
"""Initializes YOLOv5 detection layer for TensorFlow with configurable classes, anchors, channels, and image |
|
size. |
|
""" |
|
super().__init__() |
|
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32) |
|
self.nc = nc |
|
self.no = nc + 5 |
|
self.nl = len(anchors) |
|
self.na = len(anchors[0]) // 2 |
|
self.grid = [tf.zeros(1)] * self.nl |
|
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32) |
|
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2]) |
|
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] |
|
self.training = False |
|
self.imgsz = imgsz |
|
for i in range(self.nl): |
|
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] |
|
self.grid[i] = self._make_grid(nx, ny) |
|
|
|
def call(self, inputs): |
|
"""Performs forward pass through the model layers to predict object bounding boxes and classifications.""" |
|
z = [] |
|
x = [] |
|
for i in range(self.nl): |
|
x.append(self.m[i](inputs[i])) |
|
|
|
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] |
|
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no]) |
|
|
|
if not self.training: |
|
y = x[i] |
|
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5 |
|
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4 |
|
xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] |
|
wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid |
|
|
|
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) |
|
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) |
|
y = tf.concat([xy, wh, tf.sigmoid(y[..., 4 : 5 + self.nc]), y[..., 5 + self.nc :]], -1) |
|
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no])) |
|
|
|
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),) |
|
|
|
@staticmethod |
|
def _make_grid(nx=20, ny=20): |
|
"""Generates a 2D grid of coordinates in (x, y) format with shape [1, 1, ny*nx, 2].""" |
|
|
|
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny)) |
|
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32) |
|
|
|
|
|
class TFSegment(TFDetect): |
|
|
|
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None): |
|
"""Initializes YOLOv5 Segment head with specified channel depths, anchors, and input size for segmentation |
|
models. |
|
""" |
|
super().__init__(nc, anchors, ch, imgsz, w) |
|
self.nm = nm |
|
self.npr = npr |
|
self.no = 5 + nc + self.nm |
|
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] |
|
self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) |
|
self.detect = TFDetect.call |
|
|
|
def call(self, x): |
|
"""Applies detection and proto layers on input, returning detections and optionally protos if training.""" |
|
p = self.proto(x[0]) |
|
|
|
p = tf.transpose(p, [0, 3, 1, 2]) |
|
x = self.detect(self, x) |
|
return (x, p) if self.training else (x[0], p) |
|
|
|
|
|
class TFProto(keras.layers.Layer): |
|
def __init__(self, c1, c_=256, c2=32, w=None): |
|
"""Initializes TFProto layer with convolutional and upsampling layers for feature extraction and |
|
transformation. |
|
""" |
|
super().__init__() |
|
self.cv1 = TFConv(c1, c_, k=3, w=w.cv1) |
|
self.upsample = TFUpsample(None, scale_factor=2, mode="nearest") |
|
self.cv2 = TFConv(c_, c_, k=3, w=w.cv2) |
|
self.cv3 = TFConv(c_, c2, w=w.cv3) |
|
|
|
def call(self, inputs): |
|
"""Performs forward pass through the model, applying convolutions and upscaling on input tensor.""" |
|
return self.cv3(self.cv2(self.upsample(self.cv1(inputs)))) |
|
|
|
|
|
class TFUpsample(keras.layers.Layer): |
|
|
|
def __init__(self, size, scale_factor, mode, w=None): |
|
""" |
|
Initializes a TensorFlow upsampling layer with specified size, scale_factor, and mode, ensuring scale_factor is |
|
even. |
|
|
|
Warning: all arguments needed including 'w' |
|
""" |
|
super().__init__() |
|
assert scale_factor % 2 == 0, "scale_factor must be multiple of 2" |
|
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode) |
|
|
|
|
|
|
|
|
|
|
|
def call(self, inputs): |
|
"""Applies upsample operation to inputs using nearest neighbor interpolation.""" |
|
return self.upsample(inputs) |
|
|
|
|
|
class TFConcat(keras.layers.Layer): |
|
|
|
def __init__(self, dimension=1, w=None): |
|
"""Initializes a TensorFlow layer for NCHW to NHWC concatenation, requiring dimension=1.""" |
|
super().__init__() |
|
assert dimension == 1, "convert only NCHW to NHWC concat" |
|
self.d = 3 |
|
|
|
def call(self, inputs): |
|
"""Concatenates a list of tensors along the last dimension, used for NCHW to NHWC conversion.""" |
|
return tf.concat(inputs, self.d) |
|
|
|
|
|
def parse_model(d, ch, model, imgsz): |
|
"""Parses a model definition dict `d` to create YOLOv5 model layers, including dynamic channel adjustments.""" |
|
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") |
|
anchors, nc, gd, gw, ch_mul = ( |
|
d["anchors"], |
|
d["nc"], |
|
d["depth_multiple"], |
|
d["width_multiple"], |
|
d.get("channel_multiple"), |
|
) |
|
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors |
|
no = na * (nc + 5) |
|
if not ch_mul: |
|
ch_mul = 8 |
|
|
|
layers, save, c2 = [], [], ch[-1] |
|
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): |
|
m_str = m |
|
m = eval(m) if isinstance(m, str) else m |
|
for j, a in enumerate(args): |
|
try: |
|
args[j] = eval(a) if isinstance(a, str) else a |
|
except NameError: |
|
pass |
|
|
|
n = max(round(n * gd), 1) if n > 1 else n |
|
if m in [ |
|
nn.Conv2d, |
|
Conv, |
|
DWConv, |
|
DWConvTranspose2d, |
|
Bottleneck, |
|
SPP, |
|
SPPF, |
|
MixConv2d, |
|
Focus, |
|
CrossConv, |
|
BottleneckCSP, |
|
C3, |
|
C3x, |
|
]: |
|
c1, c2 = ch[f], args[0] |
|
c2 = make_divisible(c2 * gw, ch_mul) if c2 != no else c2 |
|
|
|
args = [c1, c2, *args[1:]] |
|
if m in [BottleneckCSP, C3, C3x]: |
|
args.insert(2, n) |
|
n = 1 |
|
elif m is nn.BatchNorm2d: |
|
args = [ch[f]] |
|
elif m is Concat: |
|
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f) |
|
elif m in [Detect, Segment]: |
|
args.append([ch[x + 1] for x in f]) |
|
if isinstance(args[1], int): |
|
args[1] = [list(range(args[1] * 2))] * len(f) |
|
if m is Segment: |
|
args[3] = make_divisible(args[3] * gw, ch_mul) |
|
args.append(imgsz) |
|
else: |
|
c2 = ch[f] |
|
|
|
tf_m = eval("TF" + m_str.replace("nn.", "")) |
|
m_ = ( |
|
keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) |
|
if n > 1 |
|
else tf_m(*args, w=model.model[i]) |
|
) |
|
|
|
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) |
|
t = str(m)[8:-2].replace("__main__.", "") |
|
np = sum(x.numel() for x in torch_m_.parameters()) |
|
m_.i, m_.f, m_.type, m_.np = i, f, t, np |
|
LOGGER.info(f"{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}") |
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) |
|
layers.append(m_) |
|
ch.append(c2) |
|
return keras.Sequential(layers), sorted(save) |
|
|
|
|
|
class TFModel: |
|
|
|
def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, model=None, imgsz=(640, 640)): |
|
"""Initializes TF YOLOv5 model with specified configuration, channels, classes, model instance, and input |
|
size. |
|
""" |
|
super().__init__() |
|
if isinstance(cfg, dict): |
|
self.yaml = cfg |
|
else: |
|
import yaml |
|
|
|
self.yaml_file = Path(cfg).name |
|
with open(cfg) as f: |
|
self.yaml = yaml.load(f, Loader=yaml.FullLoader) |
|
|
|
|
|
if nc and nc != self.yaml["nc"]: |
|
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}") |
|
self.yaml["nc"] = nc |
|
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz) |
|
|
|
def predict( |
|
self, |
|
inputs, |
|
tf_nms=False, |
|
agnostic_nms=False, |
|
topk_per_class=100, |
|
topk_all=100, |
|
iou_thres=0.45, |
|
conf_thres=0.25, |
|
): |
|
"""Runs inference on input data, with an option for TensorFlow NMS.""" |
|
y = [] |
|
x = inputs |
|
for m in self.model.layers: |
|
if m.f != -1: |
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] |
|
|
|
x = m(x) |
|
y.append(x if m.i in self.savelist else None) |
|
|
|
|
|
if tf_nms: |
|
boxes = self._xywh2xyxy(x[0][..., :4]) |
|
probs = x[0][:, :, 4:5] |
|
classes = x[0][:, :, 5:] |
|
scores = probs * classes |
|
if agnostic_nms: |
|
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres) |
|
else: |
|
boxes = tf.expand_dims(boxes, 2) |
|
nms = tf.image.combined_non_max_suppression( |
|
boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False |
|
) |
|
return (nms,) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod |
|
def _xywh2xyxy(xywh): |
|
"""Converts bounding box format from [x, y, w, h] to [x1, y1, x2, y2], where xy1=top-left and xy2=bottom- |
|
right. |
|
""" |
|
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1) |
|
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1) |
|
|
|
|
|
class AgnosticNMS(keras.layers.Layer): |
|
|
|
def call(self, input, topk_all, iou_thres, conf_thres): |
|
"""Performs agnostic NMS on input tensors using given thresholds and top-K selection.""" |
|
return tf.map_fn( |
|
lambda x: self._nms(x, topk_all, iou_thres, conf_thres), |
|
input, |
|
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32), |
|
name="agnostic_nms", |
|
) |
|
|
|
@staticmethod |
|
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): |
|
"""Performs agnostic non-maximum suppression (NMS) on detected objects, filtering based on IoU and confidence |
|
thresholds. |
|
""" |
|
boxes, classes, scores = x |
|
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32) |
|
scores_inp = tf.reduce_max(scores, -1) |
|
selected_inds = tf.image.non_max_suppression( |
|
boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres |
|
) |
|
selected_boxes = tf.gather(boxes, selected_inds) |
|
padded_boxes = tf.pad( |
|
selected_boxes, |
|
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]], |
|
mode="CONSTANT", |
|
constant_values=0.0, |
|
) |
|
selected_scores = tf.gather(scores_inp, selected_inds) |
|
padded_scores = tf.pad( |
|
selected_scores, |
|
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], |
|
mode="CONSTANT", |
|
constant_values=-1.0, |
|
) |
|
selected_classes = tf.gather(class_inds, selected_inds) |
|
padded_classes = tf.pad( |
|
selected_classes, |
|
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], |
|
mode="CONSTANT", |
|
constant_values=-1.0, |
|
) |
|
valid_detections = tf.shape(selected_inds)[0] |
|
return padded_boxes, padded_scores, padded_classes, valid_detections |
|
|
|
|
|
def activations(act=nn.SiLU): |
|
"""Converts PyTorch activations to TensorFlow equivalents, supporting LeakyReLU, Hardswish, and SiLU/Swish.""" |
|
if isinstance(act, nn.LeakyReLU): |
|
return lambda x: keras.activations.relu(x, alpha=0.1) |
|
elif isinstance(act, nn.Hardswish): |
|
return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667 |
|
elif isinstance(act, (nn.SiLU, SiLU)): |
|
return lambda x: keras.activations.swish(x) |
|
else: |
|
raise Exception(f"no matching TensorFlow activation found for PyTorch activation {act}") |
|
|
|
|
|
def representative_dataset_gen(dataset, ncalib=100): |
|
"""Generates a representative dataset for calibration by yielding transformed numpy arrays from the input |
|
dataset. |
|
""" |
|
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset): |
|
im = np.transpose(img, [1, 2, 0]) |
|
im = np.expand_dims(im, axis=0).astype(np.float32) |
|
im /= 255 |
|
yield [im] |
|
if n >= ncalib: |
|
break |
|
|
|
|
|
def run( |
|
weights=ROOT / "yolov5s.pt", |
|
imgsz=(640, 640), |
|
batch_size=1, |
|
dynamic=False, |
|
): |
|
|
|
"""Exports YOLOv5 model from PyTorch to TensorFlow and Keras formats, performing inference for validation.""" |
|
im = torch.zeros((batch_size, 3, *imgsz)) |
|
model = attempt_load(weights, device=torch.device("cpu"), inplace=True, fuse=False) |
|
_ = model(im) |
|
model.info() |
|
|
|
|
|
im = tf.zeros((batch_size, *imgsz, 3)) |
|
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) |
|
_ = tf_model.predict(im) |
|
|
|
|
|
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) |
|
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im)) |
|
keras_model.summary() |
|
|
|
LOGGER.info("PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.") |
|
|
|
|
|
def parse_opt(): |
|
"""Parses and returns command-line options for model inference, including weights path, image size, batch size, and |
|
dynamic batching. |
|
""" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path") |
|
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w") |
|
parser.add_argument("--batch-size", type=int, default=1, help="batch size") |
|
parser.add_argument("--dynamic", action="store_true", help="dynamic batch size") |
|
opt = parser.parse_args() |
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 |
|
print_args(vars(opt)) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
"""Executes the YOLOv5 model run function with parsed command line options.""" |
|
run(**vars(opt)) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|