|
|
|
""" |
|
Validate a trained YOLOv5 segment model on a segment dataset. |
|
|
|
Usage: |
|
$ bash data/scripts/get_coco.sh --val --segments # download COCO-segments val split (1G, 5000 images) |
|
$ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate COCO-segments |
|
|
|
Usage - formats: |
|
$ python segment/val.py --weights yolov5s-seg.pt # PyTorch |
|
yolov5s-seg.torchscript # TorchScript |
|
yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
yolov5s-seg_openvino_label # OpenVINO |
|
yolov5s-seg.engine # TensorRT |
|
yolov5s-seg.mlmodel # CoreML (macOS-only) |
|
yolov5s-seg_saved_model # TensorFlow SavedModel |
|
yolov5s-seg.pb # TensorFlow GraphDef |
|
yolov5s-seg.tflite # TensorFlow Lite |
|
yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU |
|
yolov5s-seg_paddle_model # PaddlePaddle |
|
""" |
|
|
|
import argparse |
|
import json |
|
import os |
|
import subprocess |
|
import sys |
|
from multiprocessing.pool import ThreadPool |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
from tqdm import tqdm |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[1] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) |
|
|
|
import torch.nn.functional as F |
|
|
|
from models.common import DetectMultiBackend |
|
from models.yolo import SegmentationModel |
|
from utils.callbacks import Callbacks |
|
from utils.general import ( |
|
LOGGER, |
|
NUM_THREADS, |
|
TQDM_BAR_FORMAT, |
|
Profile, |
|
check_dataset, |
|
check_img_size, |
|
check_requirements, |
|
check_yaml, |
|
coco80_to_coco91_class, |
|
colorstr, |
|
increment_path, |
|
non_max_suppression, |
|
print_args, |
|
scale_boxes, |
|
xywh2xyxy, |
|
xyxy2xywh, |
|
) |
|
from utils.metrics import ConfusionMatrix, box_iou |
|
from utils.plots import output_to_target, plot_val_study |
|
from utils.segment.dataloaders import create_dataloader |
|
from utils.segment.general import mask_iou, process_mask, process_mask_native, scale_image |
|
from utils.segment.metrics import Metrics, ap_per_class_box_and_mask |
|
from utils.segment.plots import plot_images_and_masks |
|
from utils.torch_utils import de_parallel, select_device, smart_inference_mode |
|
|
|
|
|
def save_one_txt(predn, save_conf, shape, file): |
|
"""Saves detection results in txt format; includes class, xywh (normalized), optionally confidence if `save_conf` is |
|
True. |
|
""" |
|
gn = torch.tensor(shape)[[1, 0, 1, 0]] |
|
for *xyxy, conf, cls in predn.tolist(): |
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() |
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) |
|
with open(file, "a") as f: |
|
f.write(("%g " * len(line)).rstrip() % line + "\n") |
|
|
|
|
|
def save_one_json(predn, jdict, path, class_map, pred_masks): |
|
""" |
|
Saves a JSON file with detection results including bounding boxes, category IDs, scores, and segmentation masks. |
|
|
|
Example JSON result: {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}. |
|
""" |
|
from pycocotools.mask import encode |
|
|
|
def single_encode(x): |
|
"""Encodes binary mask arrays into RLE (Run-Length Encoding) format for JSON serialization.""" |
|
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0] |
|
rle["counts"] = rle["counts"].decode("utf-8") |
|
return rle |
|
|
|
image_id = int(path.stem) if path.stem.isnumeric() else path.stem |
|
box = xyxy2xywh(predn[:, :4]) |
|
box[:, :2] -= box[:, 2:] / 2 |
|
pred_masks = np.transpose(pred_masks, (2, 0, 1)) |
|
with ThreadPool(NUM_THREADS) as pool: |
|
rles = pool.map(single_encode, pred_masks) |
|
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): |
|
jdict.append( |
|
{ |
|
"image_id": image_id, |
|
"category_id": class_map[int(p[5])], |
|
"bbox": [round(x, 3) for x in b], |
|
"score": round(p[4], 5), |
|
"segmentation": rles[i], |
|
} |
|
) |
|
|
|
|
|
def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False): |
|
""" |
|
Return correct prediction matrix |
|
Arguments: |
|
detections (array[N, 6]), x1, y1, x2, y2, conf, class |
|
labels (array[M, 5]), class, x1, y1, x2, y2 |
|
Returns: |
|
correct (array[N, 10]), for 10 IoU levels |
|
""" |
|
if masks: |
|
if overlap: |
|
nl = len(labels) |
|
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 |
|
gt_masks = gt_masks.repeat(nl, 1, 1) |
|
gt_masks = torch.where(gt_masks == index, 1.0, 0.0) |
|
if gt_masks.shape[1:] != pred_masks.shape[1:]: |
|
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0] |
|
gt_masks = gt_masks.gt_(0.5) |
|
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) |
|
else: |
|
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
|
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) |
|
correct_class = labels[:, 0:1] == detections[:, 5] |
|
for i in range(len(iouv)): |
|
x = torch.where((iou >= iouv[i]) & correct_class) |
|
if x[0].shape[0]: |
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() |
|
if x[0].shape[0] > 1: |
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
correct[matches[:, 1].astype(int), i] = True |
|
return torch.tensor(correct, dtype=torch.bool, device=iouv.device) |
|
|
|
|
|
@smart_inference_mode() |
|
def run( |
|
data, |
|
weights=None, |
|
batch_size=32, |
|
imgsz=640, |
|
conf_thres=0.001, |
|
iou_thres=0.6, |
|
max_det=300, |
|
task="val", |
|
device="", |
|
workers=8, |
|
single_cls=False, |
|
augment=False, |
|
verbose=False, |
|
save_txt=False, |
|
save_hybrid=False, |
|
save_conf=False, |
|
save_json=False, |
|
project=ROOT / "runs/val-seg", |
|
name="exp", |
|
exist_ok=False, |
|
half=True, |
|
dnn=False, |
|
model=None, |
|
dataloader=None, |
|
save_dir=Path(""), |
|
plots=True, |
|
overlap=False, |
|
mask_downsample_ratio=1, |
|
compute_loss=None, |
|
callbacks=Callbacks(), |
|
): |
|
"""Validates a YOLOv5 segmentation model on specified dataset, producing metrics, plots, and optional JSON |
|
output. |
|
""" |
|
if save_json: |
|
check_requirements("pycocotools>=2.0.6") |
|
process = process_mask_native |
|
else: |
|
process = process_mask |
|
|
|
|
|
training = model is not None |
|
if training: |
|
device, pt, jit, engine = next(model.parameters()).device, True, False, False |
|
half &= device.type != "cpu" |
|
model.half() if half else model.float() |
|
nm = de_parallel(model).model[-1].nm |
|
else: |
|
device = select_device(device, batch_size=batch_size) |
|
|
|
|
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) |
|
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) |
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine |
|
imgsz = check_img_size(imgsz, s=stride) |
|
half = model.fp16 |
|
nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 |
|
if engine: |
|
batch_size = model.batch_size |
|
else: |
|
device = model.device |
|
if not (pt or jit): |
|
batch_size = 1 |
|
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models") |
|
|
|
|
|
data = check_dataset(data) |
|
|
|
|
|
model.eval() |
|
cuda = device.type != "cpu" |
|
is_coco = isinstance(data.get("val"), str) and data["val"].endswith(f"coco{os.sep}val2017.txt") |
|
nc = 1 if single_cls else int(data["nc"]) |
|
iouv = torch.linspace(0.5, 0.95, 10, device=device) |
|
niou = iouv.numel() |
|
|
|
|
|
if not training: |
|
if pt and not single_cls: |
|
ncm = model.model.nc |
|
assert ncm == nc, ( |
|
f"{weights} ({ncm} classes) trained on different --data than what you passed ({nc} " |
|
f"classes). Pass correct combination of --weights and --data that are trained together." |
|
) |
|
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) |
|
pad, rect = (0.0, False) if task == "speed" else (0.5, pt) |
|
task = task if task in ("train", "val", "test") else "val" |
|
dataloader = create_dataloader( |
|
data[task], |
|
imgsz, |
|
batch_size, |
|
stride, |
|
single_cls, |
|
pad=pad, |
|
rect=rect, |
|
workers=workers, |
|
prefix=colorstr(f"{task}: "), |
|
overlap_mask=overlap, |
|
mask_downsample_ratio=mask_downsample_ratio, |
|
)[0] |
|
|
|
seen = 0 |
|
confusion_matrix = ConfusionMatrix(nc=nc) |
|
names = model.names if hasattr(model, "names") else model.module.names |
|
if isinstance(names, (list, tuple)): |
|
names = dict(enumerate(names)) |
|
class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) |
|
s = ("%22s" + "%11s" * 10) % ( |
|
"Class", |
|
"Images", |
|
"Instances", |
|
"Box(P", |
|
"R", |
|
"mAP50", |
|
"mAP50-95)", |
|
"Mask(P", |
|
"R", |
|
"mAP50", |
|
"mAP50-95)", |
|
) |
|
dt = Profile(device=device), Profile(device=device), Profile(device=device) |
|
metrics = Metrics() |
|
loss = torch.zeros(4, device=device) |
|
jdict, stats = [], [] |
|
|
|
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) |
|
for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar): |
|
|
|
with dt[0]: |
|
if cuda: |
|
im = im.to(device, non_blocking=True) |
|
targets = targets.to(device) |
|
masks = masks.to(device) |
|
masks = masks.float() |
|
im = im.half() if half else im.float() |
|
im /= 255 |
|
nb, _, height, width = im.shape |
|
|
|
|
|
with dt[1]: |
|
preds, protos, train_out = model(im) if compute_loss else (*model(im, augment=augment)[:2], None) |
|
|
|
|
|
if compute_loss: |
|
loss += compute_loss((train_out, protos), targets, masks)[1] |
|
|
|
|
|
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) |
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] |
|
with dt[2]: |
|
preds = non_max_suppression( |
|
preds, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls, max_det=max_det, nm=nm |
|
) |
|
|
|
|
|
plot_masks = [] |
|
for si, (pred, proto) in enumerate(zip(preds, protos)): |
|
labels = targets[targets[:, 0] == si, 1:] |
|
nl, npr = labels.shape[0], pred.shape[0] |
|
path, shape = Path(paths[si]), shapes[si][0] |
|
correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) |
|
correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) |
|
seen += 1 |
|
|
|
if npr == 0: |
|
if nl: |
|
stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0])) |
|
if plots: |
|
confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) |
|
continue |
|
|
|
|
|
midx = [si] if overlap else targets[:, 0] == si |
|
gt_masks = masks[midx] |
|
pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:]) |
|
|
|
|
|
if single_cls: |
|
pred[:, 5] = 0 |
|
predn = pred.clone() |
|
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) |
|
|
|
|
|
if nl: |
|
tbox = xywh2xyxy(labels[:, 1:5]) |
|
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) |
|
labelsn = torch.cat((labels[:, 0:1], tbox), 1) |
|
correct_bboxes = process_batch(predn, labelsn, iouv) |
|
correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True) |
|
if plots: |
|
confusion_matrix.process_batch(predn, labelsn) |
|
stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) |
|
|
|
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) |
|
if plots and batch_i < 3: |
|
plot_masks.append(pred_masks[:15]) |
|
|
|
|
|
if save_txt: |
|
save_one_txt(predn, save_conf, shape, file=save_dir / "labels" / f"{path.stem}.txt") |
|
if save_json: |
|
pred_masks = scale_image( |
|
im[si].shape[1:], pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1] |
|
) |
|
save_one_json(predn, jdict, path, class_map, pred_masks) |
|
|
|
|
|
|
|
if plots and batch_i < 3: |
|
if len(plot_masks): |
|
plot_masks = torch.cat(plot_masks, dim=0) |
|
plot_images_and_masks(im, targets, masks, paths, save_dir / f"val_batch{batch_i}_labels.jpg", names) |
|
plot_images_and_masks( |
|
im, |
|
output_to_target(preds, max_det=15), |
|
plot_masks, |
|
paths, |
|
save_dir / f"val_batch{batch_i}_pred.jpg", |
|
names, |
|
) |
|
|
|
|
|
|
|
|
|
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] |
|
if len(stats) and stats[0].any(): |
|
results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names) |
|
metrics.update(results) |
|
nt = np.bincount(stats[4].astype(int), minlength=nc) |
|
|
|
|
|
pf = "%22s" + "%11i" * 2 + "%11.3g" * 8 |
|
LOGGER.info(pf % ("all", seen, nt.sum(), *metrics.mean_results())) |
|
if nt.sum() == 0: |
|
LOGGER.warning(f"WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels") |
|
|
|
|
|
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): |
|
for i, c in enumerate(metrics.ap_class_index): |
|
LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i))) |
|
|
|
|
|
t = tuple(x.t / seen * 1e3 for x in dt) |
|
if not training: |
|
shape = (batch_size, 3, imgsz, imgsz) |
|
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" % t) |
|
|
|
|
|
if plots: |
|
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) |
|
|
|
|
|
mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results() |
|
|
|
|
|
if save_json and len(jdict): |
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else "" |
|
anno_json = str(Path("../datasets/coco/annotations/instances_val2017.json")) |
|
pred_json = str(save_dir / f"{w}_predictions.json") |
|
LOGGER.info(f"\nEvaluating pycocotools mAP... saving {pred_json}...") |
|
with open(pred_json, "w") as f: |
|
json.dump(jdict, f) |
|
|
|
try: |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
anno = COCO(anno_json) |
|
pred = anno.loadRes(pred_json) |
|
results = [] |
|
for eval in COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm"): |
|
if is_coco: |
|
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] |
|
eval.evaluate() |
|
eval.accumulate() |
|
eval.summarize() |
|
results.extend(eval.stats[:2]) |
|
map_bbox, map50_bbox, map_mask, map50_mask = results |
|
except Exception as e: |
|
LOGGER.info(f"pycocotools unable to run: {e}") |
|
|
|
|
|
model.float() |
|
if not training: |
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "" |
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") |
|
final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask |
|
return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t |
|
|
|
|
|
def parse_opt(): |
|
"""Parses command line arguments for configuring YOLOv5 options like dataset path, weights, batch size, and |
|
inference settings. |
|
""" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--data", type=str, default=ROOT / "data/coco128-seg.yaml", help="dataset.yaml path") |
|
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-seg.pt", help="model path(s)") |
|
parser.add_argument("--batch-size", type=int, default=32, help="batch size") |
|
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)") |
|
parser.add_argument("--conf-thres", type=float, default=0.001, help="confidence threshold") |
|
parser.add_argument("--iou-thres", type=float, default=0.6, help="NMS IoU threshold") |
|
parser.add_argument("--max-det", type=int, default=300, help="maximum detections per image") |
|
parser.add_argument("--task", default="val", help="train, val, test, speed or study") |
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") |
|
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)") |
|
parser.add_argument("--single-cls", action="store_true", help="treat as single-class dataset") |
|
parser.add_argument("--augment", action="store_true", help="augmented inference") |
|
parser.add_argument("--verbose", action="store_true", help="report mAP by class") |
|
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt") |
|
parser.add_argument("--save-hybrid", action="store_true", help="save label+prediction hybrid results to *.txt") |
|
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels") |
|
parser.add_argument("--save-json", action="store_true", help="save a COCO-JSON results file") |
|
parser.add_argument("--project", default=ROOT / "runs/val-seg", help="save results to project/name") |
|
parser.add_argument("--name", default="exp", help="save to project/name") |
|
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") |
|
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") |
|
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference") |
|
opt = parser.parse_args() |
|
opt.data = check_yaml(opt.data) |
|
|
|
opt.save_txt |= opt.save_hybrid |
|
print_args(vars(opt)) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
"""Executes YOLOv5 tasks including training, validation, testing, speed, and study with configurable options.""" |
|
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop")) |
|
|
|
if opt.task in ("train", "val", "test"): |
|
if opt.conf_thres > 0.001: |
|
LOGGER.warning(f"WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results") |
|
if opt.save_hybrid: |
|
LOGGER.warning("WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone") |
|
run(**vars(opt)) |
|
|
|
else: |
|
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] |
|
opt.half = torch.cuda.is_available() and opt.device != "cpu" |
|
if opt.task == "speed": |
|
|
|
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False |
|
for opt.weights in weights: |
|
run(**vars(opt), plots=False) |
|
|
|
elif opt.task == "study": |
|
|
|
for opt.weights in weights: |
|
f = f"study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt" |
|
x, y = list(range(256, 1536 + 128, 128)), [] |
|
for opt.imgsz in x: |
|
LOGGER.info(f"\nRunning {f} --imgsz {opt.imgsz}...") |
|
r, _, t = run(**vars(opt), plots=False) |
|
y.append(r + t) |
|
np.savetxt(f, y, fmt="%10.4g") |
|
subprocess.run(["zip", "-r", "study.zip", "study_*.txt"]) |
|
plot_val_study(x=x) |
|
else: |
|
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")') |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|