|
|
|
"""Image augmentation functions.""" |
|
|
|
import math |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
import torchvision.transforms.functional as TF |
|
|
|
from yolov5.utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy |
|
from yolov5.utils.metrics import bbox_ioa |
|
|
|
IMAGENET_MEAN = 0.485, 0.456, 0.406 |
|
IMAGENET_STD = 0.229, 0.224, 0.225 |
|
|
|
|
|
class Albumentations: |
|
|
|
def __init__(self, size=640): |
|
"""Initializes Albumentations class for optional data augmentation in YOLOv5 with specified input size.""" |
|
self.transform = None |
|
prefix = colorstr("albumentations: ") |
|
try: |
|
import albumentations as A |
|
|
|
check_version(A.__version__, "1.0.3", hard=True) |
|
|
|
T = [ |
|
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0), |
|
A.Blur(p=0.01), |
|
A.MedianBlur(p=0.01), |
|
A.ToGray(p=0.01), |
|
A.CLAHE(p=0.01), |
|
A.RandomBrightnessContrast(p=0.0), |
|
A.RandomGamma(p=0.0), |
|
A.ImageCompression(quality_lower=75, p=0.0), |
|
] |
|
self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"])) |
|
|
|
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p)) |
|
except ImportError: |
|
pass |
|
except Exception as e: |
|
LOGGER.info(f"{prefix}{e}") |
|
|
|
def __call__(self, im, labels, p=1.0): |
|
"""Applies transformations to an image and labels with probability `p`, returning updated image and labels.""" |
|
if self.transform and random.random() < p: |
|
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) |
|
im, labels = new["image"], np.array([[c, *b] for c, b in zip(new["class_labels"], new["bboxes"])]) |
|
return im, labels |
|
|
|
|
|
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False): |
|
""" |
|
Applies ImageNet normalization to RGB images in BCHW format, modifying them in-place if specified. |
|
|
|
Example: y = (x - mean) / std |
|
""" |
|
return TF.normalize(x, mean, std, inplace=inplace) |
|
|
|
|
|
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD): |
|
"""Reverses ImageNet normalization for BCHW format RGB images by applying `x = x * std + mean`.""" |
|
for i in range(3): |
|
x[:, i] = x[:, i] * std[i] + mean[i] |
|
return x |
|
|
|
|
|
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): |
|
"""Applies HSV color-space augmentation to an image with random gains for hue, saturation, and value.""" |
|
if hgain or sgain or vgain: |
|
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 |
|
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) |
|
dtype = im.dtype |
|
|
|
x = np.arange(0, 256, dtype=r.dtype) |
|
lut_hue = ((x * r[0]) % 180).astype(dtype) |
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) |
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) |
|
|
|
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) |
|
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) |
|
|
|
|
|
def hist_equalize(im, clahe=True, bgr=False): |
|
"""Equalizes image histogram, with optional CLAHE, for BGR or RGB image with shape (n,m,3) and range 0-255.""" |
|
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) |
|
if clahe: |
|
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) |
|
yuv[:, :, 0] = c.apply(yuv[:, :, 0]) |
|
else: |
|
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) |
|
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) |
|
|
|
|
|
def replicate(im, labels): |
|
""" |
|
Replicates half of the smallest object labels in an image for data augmentation. |
|
|
|
Returns augmented image and labels. |
|
""" |
|
h, w = im.shape[:2] |
|
boxes = labels[:, 1:].astype(int) |
|
x1, y1, x2, y2 = boxes.T |
|
s = ((x2 - x1) + (y2 - y1)) / 2 |
|
for i in s.argsort()[: round(s.size * 0.5)]: |
|
x1b, y1b, x2b, y2b = boxes[i] |
|
bh, bw = y2b - y1b, x2b - x1b |
|
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) |
|
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] |
|
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] |
|
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) |
|
|
|
return im, labels |
|
|
|
|
|
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): |
|
"""Resizes and pads image to new_shape with stride-multiple constraints, returns resized image, ratio, padding.""" |
|
shape = im.shape[:2] |
|
if isinstance(new_shape, int): |
|
new_shape = (new_shape, new_shape) |
|
|
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
if not scaleup: |
|
r = min(r, 1.0) |
|
|
|
|
|
ratio = r, r |
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] |
|
if auto: |
|
dw, dh = np.mod(dw, stride), np.mod(dh, stride) |
|
elif scaleFill: |
|
dw, dh = 0.0, 0.0 |
|
new_unpad = (new_shape[1], new_shape[0]) |
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] |
|
|
|
dw /= 2 |
|
dh /= 2 |
|
|
|
if shape[::-1] != new_unpad: |
|
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) |
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) |
|
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) |
|
return im, ratio, (dw, dh) |
|
|
|
|
|
def random_perspective( |
|
im, targets=(), segments=(), degrees=10, translate=0.1, scale=0.1, shear=10, perspective=0.0, border=(0, 0) |
|
): |
|
|
|
|
|
|
|
"""Applies random perspective transformation to an image, modifying the image and corresponding labels.""" |
|
height = im.shape[0] + border[0] * 2 |
|
width = im.shape[1] + border[1] * 2 |
|
|
|
|
|
C = np.eye(3) |
|
C[0, 2] = -im.shape[1] / 2 |
|
C[1, 2] = -im.shape[0] / 2 |
|
|
|
|
|
P = np.eye(3) |
|
P[2, 0] = random.uniform(-perspective, perspective) |
|
P[2, 1] = random.uniform(-perspective, perspective) |
|
|
|
|
|
R = np.eye(3) |
|
a = random.uniform(-degrees, degrees) |
|
|
|
s = random.uniform(1 - scale, 1 + scale) |
|
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) |
|
|
|
|
|
S = np.eye(3) |
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) |
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) |
|
|
|
|
|
T = np.eye(3) |
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width |
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height |
|
|
|
|
|
M = T @ S @ R @ P @ C |
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): |
|
if perspective: |
|
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) |
|
else: |
|
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n = len(targets) |
|
if n: |
|
use_segments = any(x.any() for x in segments) and len(segments) == n |
|
new = np.zeros((n, 4)) |
|
if use_segments: |
|
segments = resample_segments(segments) |
|
for i, segment in enumerate(segments): |
|
xy = np.ones((len(segment), 3)) |
|
xy[:, :2] = segment |
|
xy = xy @ M.T |
|
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] |
|
|
|
|
|
new[i] = segment2box(xy, width, height) |
|
|
|
else: |
|
xy = np.ones((n * 4, 3)) |
|
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) |
|
xy = xy @ M.T |
|
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) |
|
|
|
|
|
x = xy[:, [0, 2, 4, 6]] |
|
y = xy[:, [1, 3, 5, 7]] |
|
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T |
|
|
|
|
|
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) |
|
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) |
|
|
|
|
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) |
|
targets = targets[i] |
|
targets[:, 1:5] = new[i] |
|
|
|
return im, targets |
|
|
|
|
|
def copy_paste(im, labels, segments, p=0.5): |
|
""" |
|
Applies Copy-Paste augmentation by flipping and merging segments and labels on an image. |
|
|
|
Details at https://arxiv.org/abs/2012.07177. |
|
""" |
|
n = len(segments) |
|
if p and n: |
|
h, w, c = im.shape |
|
im_new = np.zeros(im.shape, np.uint8) |
|
for j in random.sample(range(n), k=round(p * n)): |
|
l, s = labels[j], segments[j] |
|
box = w - l[3], l[2], w - l[1], l[4] |
|
ioa = bbox_ioa(box, labels[:, 1:5]) |
|
if (ioa < 0.30).all(): |
|
labels = np.concatenate((labels, [[l[0], *box]]), 0) |
|
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) |
|
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED) |
|
|
|
result = cv2.flip(im, 1) |
|
i = cv2.flip(im_new, 1).astype(bool) |
|
im[i] = result[i] |
|
|
|
return im, labels, segments |
|
|
|
|
|
def cutout(im, labels, p=0.5): |
|
""" |
|
Applies cutout augmentation to an image with optional label adjustment, using random masks of varying sizes. |
|
|
|
Details at https://arxiv.org/abs/1708.04552. |
|
""" |
|
if random.random() < p: |
|
h, w = im.shape[:2] |
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 |
|
for s in scales: |
|
mask_h = random.randint(1, int(h * s)) |
|
mask_w = random.randint(1, int(w * s)) |
|
|
|
|
|
xmin = max(0, random.randint(0, w) - mask_w // 2) |
|
ymin = max(0, random.randint(0, h) - mask_h // 2) |
|
xmax = min(w, xmin + mask_w) |
|
ymax = min(h, ymin + mask_h) |
|
|
|
|
|
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] |
|
|
|
|
|
if len(labels) and s > 0.03: |
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) |
|
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h)) |
|
labels = labels[ioa < 0.60] |
|
|
|
return labels |
|
|
|
|
|
def mixup(im, labels, im2, labels2): |
|
""" |
|
Applies MixUp augmentation by blending images and labels. |
|
|
|
See https://arxiv.org/pdf/1710.09412.pdf for details. |
|
""" |
|
r = np.random.beta(32.0, 32.0) |
|
im = (im * r + im2 * (1 - r)).astype(np.uint8) |
|
labels = np.concatenate((labels, labels2), 0) |
|
return im, labels |
|
|
|
|
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): |
|
""" |
|
Filters bounding box candidates by minimum width-height threshold `wh_thr` (pixels), aspect ratio threshold |
|
`ar_thr`, and area ratio threshold `area_thr`. |
|
|
|
box1(4,n) is before augmentation, box2(4,n) is after augmentation. |
|
""" |
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] |
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] |
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) |
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) |
|
|
|
|
|
def classify_albumentations( |
|
augment=True, |
|
size=224, |
|
scale=(0.08, 1.0), |
|
ratio=(0.75, 1.0 / 0.75), |
|
hflip=0.5, |
|
vflip=0.0, |
|
jitter=0.4, |
|
mean=IMAGENET_MEAN, |
|
std=IMAGENET_STD, |
|
auto_aug=False, |
|
): |
|
|
|
"""Sets up and returns Albumentations transforms for YOLOv5 classification tasks depending on augmentation |
|
settings. |
|
""" |
|
prefix = colorstr("albumentations: ") |
|
try: |
|
import albumentations as A |
|
from albumentations.pytorch import ToTensorV2 |
|
|
|
check_version(A.__version__, "1.0.3", hard=True) |
|
if augment: |
|
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)] |
|
if auto_aug: |
|
|
|
LOGGER.info(f"{prefix}auto augmentations are currently not supported") |
|
else: |
|
if hflip > 0: |
|
T += [A.HorizontalFlip(p=hflip)] |
|
if vflip > 0: |
|
T += [A.VerticalFlip(p=vflip)] |
|
if jitter > 0: |
|
color_jitter = (float(jitter),) * 3 |
|
T += [A.ColorJitter(*color_jitter, 0)] |
|
else: |
|
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] |
|
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] |
|
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p)) |
|
return A.Compose(T) |
|
|
|
except ImportError: |
|
LOGGER.warning(f"{prefix}⚠️ not found, install with `pip install albumentations` (recommended)") |
|
except Exception as e: |
|
LOGGER.info(f"{prefix}{e}") |
|
|
|
|
|
def classify_transforms(size=224): |
|
"""Applies a series of transformations including center crop, ToTensor, and normalization for classification.""" |
|
assert isinstance(size, int), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)" |
|
|
|
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) |
|
|
|
|
|
class LetterBox: |
|
|
|
def __init__(self, size=(640, 640), auto=False, stride=32): |
|
"""Initializes a LetterBox object for YOLOv5 image preprocessing with optional auto sizing and stride |
|
adjustment. |
|
""" |
|
super().__init__() |
|
self.h, self.w = (size, size) if isinstance(size, int) else size |
|
self.auto = auto |
|
self.stride = stride |
|
|
|
def __call__(self, im): |
|
""" |
|
Resizes and pads input image `im` (HWC format) to specified dimensions, maintaining aspect ratio. |
|
|
|
im = np.array HWC |
|
""" |
|
imh, imw = im.shape[:2] |
|
r = min(self.h / imh, self.w / imw) |
|
h, w = round(imh * r), round(imw * r) |
|
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w |
|
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) |
|
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) |
|
im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) |
|
return im_out |
|
|
|
|
|
class CenterCrop: |
|
|
|
def __init__(self, size=640): |
|
"""Initializes CenterCrop for image preprocessing, accepting single int or tuple for size, defaults to 640.""" |
|
super().__init__() |
|
self.h, self.w = (size, size) if isinstance(size, int) else size |
|
|
|
def __call__(self, im): |
|
""" |
|
Applies center crop to the input image and resizes it to a specified size, maintaining aspect ratio. |
|
|
|
im = np.array HWC |
|
""" |
|
imh, imw = im.shape[:2] |
|
m = min(imh, imw) |
|
top, left = (imh - m) // 2, (imw - m) // 2 |
|
return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
class ToTensor: |
|
|
|
def __init__(self, half=False): |
|
"""Initializes ToTensor for YOLOv5 image preprocessing, with optional half precision (half=True for FP16).""" |
|
super().__init__() |
|
self.half = half |
|
|
|
def __call__(self, im): |
|
""" |
|
Converts BGR np.array image from HWC to RGB CHW format, and normalizes to [0, 1], with support for FP16 if |
|
`half=True`. |
|
|
|
im = np.array HWC in BGR order |
|
""" |
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) |
|
im = torch.from_numpy(im) |
|
im = im.half() if self.half else im.float() |
|
im /= 255.0 |
|
return im |
|
|