|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
from pathlib import Path |
|
|
|
import torch |
|
import yaml |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[2] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
|
|
port = 0 |
|
path = Path("").resolve() |
|
for last in path.rglob("*/**/last.pt"): |
|
ckpt = torch.load(last) |
|
if ckpt["optimizer"] is None: |
|
continue |
|
|
|
|
|
with open(last.parent.parent / "opt.yaml", errors="ignore") as f: |
|
opt = yaml.safe_load(f) |
|
|
|
|
|
d = opt["device"].split(",") |
|
nd = len(d) |
|
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) |
|
|
|
if ddp: |
|
port += 1 |
|
cmd = f"python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}" |
|
else: |
|
cmd = f"python train.py --resume {last}" |
|
|
|
cmd += " > /dev/null 2>&1 &" |
|
print(cmd) |
|
os.system(cmd) |
|
|