|
|
|
"""Dataloaders and dataset utils.""" |
|
|
|
import contextlib |
|
import glob |
|
import hashlib |
|
import json |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
import time |
|
from itertools import repeat |
|
from multiprocessing.pool import Pool, ThreadPool |
|
from pathlib import Path |
|
from threading import Thread |
|
from urllib.parse import urlparse |
|
|
|
import numpy as np |
|
import psutil |
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision |
|
import yaml |
|
from PIL import ExifTags, Image, ImageOps |
|
from torch.utils.data import DataLoader, Dataset, dataloader, distributed |
|
from tqdm import tqdm |
|
|
|
from utils.augmentations import ( |
|
Albumentations, |
|
augment_hsv, |
|
classify_albumentations, |
|
classify_transforms, |
|
copy_paste, |
|
letterbox, |
|
mixup, |
|
random_perspective, |
|
) |
|
from utils.general import ( |
|
DATASETS_DIR, |
|
LOGGER, |
|
NUM_THREADS, |
|
TQDM_BAR_FORMAT, |
|
check_dataset, |
|
check_requirements, |
|
check_yaml, |
|
clean_str, |
|
cv2, |
|
is_colab, |
|
is_kaggle, |
|
segments2boxes, |
|
unzip_file, |
|
xyn2xy, |
|
xywh2xyxy, |
|
xywhn2xyxy, |
|
xyxy2xywhn, |
|
) |
|
from utils.torch_utils import torch_distributed_zero_first |
|
|
|
|
|
HELP_URL = "See https://docs.ultralytics.com/yolov5/tutorials/train_custom_data" |
|
IMG_FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm" |
|
VID_FORMATS = "asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv" |
|
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) |
|
RANK = int(os.getenv("RANK", -1)) |
|
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1)) |
|
PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true" |
|
|
|
|
|
for orientation in ExifTags.TAGS.keys(): |
|
if ExifTags.TAGS[orientation] == "Orientation": |
|
break |
|
|
|
|
|
def get_hash(paths): |
|
"""Generates a single SHA256 hash for a list of file or directory paths by combining their sizes and paths.""" |
|
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) |
|
h = hashlib.sha256(str(size).encode()) |
|
h.update("".join(paths).encode()) |
|
return h.hexdigest() |
|
|
|
|
|
def exif_size(img): |
|
"""Returns corrected PIL image size (width, height) considering EXIF orientation.""" |
|
s = img.size |
|
with contextlib.suppress(Exception): |
|
rotation = dict(img._getexif().items())[orientation] |
|
if rotation in [6, 8]: |
|
s = (s[1], s[0]) |
|
return s |
|
|
|
|
|
def exif_transpose(image): |
|
""" |
|
Transpose a PIL image accordingly if it has an EXIF Orientation tag. |
|
Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose() |
|
|
|
:param image: The image to transpose. |
|
:return: An image. |
|
""" |
|
exif = image.getexif() |
|
orientation = exif.get(0x0112, 1) |
|
if orientation > 1: |
|
method = { |
|
2: Image.FLIP_LEFT_RIGHT, |
|
3: Image.ROTATE_180, |
|
4: Image.FLIP_TOP_BOTTOM, |
|
5: Image.TRANSPOSE, |
|
6: Image.ROTATE_270, |
|
7: Image.TRANSVERSE, |
|
8: Image.ROTATE_90, |
|
}.get(orientation) |
|
if method is not None: |
|
image = image.transpose(method) |
|
del exif[0x0112] |
|
image.info["exif"] = exif.tobytes() |
|
return image |
|
|
|
|
|
def seed_worker(worker_id): |
|
""" |
|
Sets the seed for a dataloader worker to ensure reproducibility, based on PyTorch's randomness notes. |
|
|
|
See https://pytorch.org/docs/stable/notes/randomness.html#dataloader. |
|
""" |
|
worker_seed = torch.initial_seed() % 2**32 |
|
np.random.seed(worker_seed) |
|
random.seed(worker_seed) |
|
|
|
|
|
|
|
|
|
class SmartDistributedSampler(distributed.DistributedSampler): |
|
def __iter__(self): |
|
"""Yields indices for distributed data sampling, shuffled deterministically based on epoch and seed.""" |
|
g = torch.Generator() |
|
g.manual_seed(self.seed + self.epoch) |
|
|
|
|
|
n = int((len(self.dataset) - self.rank - 1) / self.num_replicas) + 1 |
|
idx = torch.randperm(n, generator=g) |
|
if not self.shuffle: |
|
idx = idx.sort()[0] |
|
|
|
idx = idx.tolist() |
|
if self.drop_last: |
|
idx = idx[: self.num_samples] |
|
else: |
|
padding_size = self.num_samples - len(idx) |
|
if padding_size <= len(idx): |
|
idx += idx[:padding_size] |
|
else: |
|
idx += (idx * math.ceil(padding_size / len(idx)))[:padding_size] |
|
|
|
return iter(idx) |
|
|
|
|
|
def create_dataloader( |
|
path, |
|
imgsz, |
|
batch_size, |
|
stride, |
|
single_cls=False, |
|
hyp=None, |
|
augment=False, |
|
cache=False, |
|
pad=0.0, |
|
rect=False, |
|
rank=-1, |
|
workers=8, |
|
image_weights=False, |
|
quad=False, |
|
prefix="", |
|
shuffle=False, |
|
seed=0, |
|
): |
|
"""Creates and returns a configured DataLoader instance for loading and processing image datasets.""" |
|
if rect and shuffle: |
|
LOGGER.warning("WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False") |
|
shuffle = False |
|
with torch_distributed_zero_first(rank): |
|
dataset = LoadImagesAndLabels( |
|
path, |
|
imgsz, |
|
batch_size, |
|
augment=augment, |
|
hyp=hyp, |
|
rect=rect, |
|
cache_images=cache, |
|
single_cls=single_cls, |
|
stride=int(stride), |
|
pad=pad, |
|
image_weights=image_weights, |
|
prefix=prefix, |
|
rank=rank, |
|
) |
|
|
|
batch_size = min(batch_size, len(dataset)) |
|
nd = torch.cuda.device_count() |
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) |
|
sampler = None if rank == -1 else SmartDistributedSampler(dataset, shuffle=shuffle) |
|
loader = DataLoader if image_weights else InfiniteDataLoader |
|
generator = torch.Generator() |
|
generator.manual_seed(6148914691236517205 + seed + RANK) |
|
return loader( |
|
dataset, |
|
batch_size=batch_size, |
|
shuffle=shuffle and sampler is None, |
|
num_workers=nw, |
|
sampler=sampler, |
|
pin_memory=PIN_MEMORY, |
|
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn, |
|
worker_init_fn=seed_worker, |
|
generator=generator, |
|
), dataset |
|
|
|
|
|
class InfiniteDataLoader(dataloader.DataLoader): |
|
""" |
|
Dataloader that reuses workers. |
|
|
|
Uses same syntax as vanilla DataLoader |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
"""Initializes an InfiniteDataLoader that reuses workers with standard DataLoader syntax, augmenting with a |
|
repeating sampler. |
|
""" |
|
super().__init__(*args, **kwargs) |
|
object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler)) |
|
self.iterator = super().__iter__() |
|
|
|
def __len__(self): |
|
"""Returns the length of the batch sampler's sampler in the InfiniteDataLoader.""" |
|
return len(self.batch_sampler.sampler) |
|
|
|
def __iter__(self): |
|
"""Yields batches of data indefinitely in a loop by resetting the sampler when exhausted.""" |
|
for _ in range(len(self)): |
|
yield next(self.iterator) |
|
|
|
|
|
class _RepeatSampler: |
|
""" |
|
Sampler that repeats forever. |
|
|
|
Args: |
|
sampler (Sampler) |
|
""" |
|
|
|
def __init__(self, sampler): |
|
"""Initializes a perpetual sampler wrapping a provided `Sampler` instance for endless data iteration.""" |
|
self.sampler = sampler |
|
|
|
def __iter__(self): |
|
"""Returns an infinite iterator over the dataset by repeatedly yielding from the given sampler.""" |
|
while True: |
|
yield from iter(self.sampler) |
|
|
|
|
|
class LoadScreenshots: |
|
|
|
def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None): |
|
""" |
|
Initializes a screenshot dataloader for YOLOv5 with specified source region, image size, stride, auto, and |
|
transforms. |
|
|
|
Source = [screen_number left top width height] (pixels) |
|
""" |
|
check_requirements("mss") |
|
import mss |
|
|
|
source, *params = source.split() |
|
self.screen, left, top, width, height = 0, None, None, None, None |
|
if len(params) == 1: |
|
self.screen = int(params[0]) |
|
elif len(params) == 4: |
|
left, top, width, height = (int(x) for x in params) |
|
elif len(params) == 5: |
|
self.screen, left, top, width, height = (int(x) for x in params) |
|
self.img_size = img_size |
|
self.stride = stride |
|
self.transforms = transforms |
|
self.auto = auto |
|
self.mode = "stream" |
|
self.frame = 0 |
|
self.sct = mss.mss() |
|
|
|
|
|
monitor = self.sct.monitors[self.screen] |
|
self.top = monitor["top"] if top is None else (monitor["top"] + top) |
|
self.left = monitor["left"] if left is None else (monitor["left"] + left) |
|
self.width = width or monitor["width"] |
|
self.height = height or monitor["height"] |
|
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height} |
|
|
|
def __iter__(self): |
|
"""Iterates over itself, enabling use in loops and iterable contexts.""" |
|
return self |
|
|
|
def __next__(self): |
|
"""Captures and returns the next screen frame as a BGR numpy array, cropping to only the first three channels |
|
from BGRA. |
|
""" |
|
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] |
|
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: " |
|
|
|
if self.transforms: |
|
im = self.transforms(im0) |
|
else: |
|
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] |
|
im = im.transpose((2, 0, 1))[::-1] |
|
im = np.ascontiguousarray(im) |
|
self.frame += 1 |
|
return str(self.screen), im, im0, None, s |
|
|
|
|
|
class LoadImages: |
|
"""YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`""" |
|
|
|
def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1): |
|
"""Initializes YOLOv5 loader for images/videos, supporting glob patterns, directories, and lists of paths.""" |
|
if isinstance(path, str) and Path(path).suffix == ".txt": |
|
path = Path(path).read_text().rsplit() |
|
files = [] |
|
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]: |
|
p = str(Path(p).resolve()) |
|
if "*" in p: |
|
files.extend(sorted(glob.glob(p, recursive=True))) |
|
elif os.path.isdir(p): |
|
files.extend(sorted(glob.glob(os.path.join(p, "*.*")))) |
|
elif os.path.isfile(p): |
|
files.append(p) |
|
else: |
|
raise FileNotFoundError(f"{p} does not exist") |
|
|
|
images = [x for x in files if x.split(".")[-1].lower() in IMG_FORMATS] |
|
videos = [x for x in files if x.split(".")[-1].lower() in VID_FORMATS] |
|
ni, nv = len(images), len(videos) |
|
|
|
self.img_size = img_size |
|
self.stride = stride |
|
self.files = images + videos |
|
self.nf = ni + nv |
|
self.video_flag = [False] * ni + [True] * nv |
|
self.mode = "image" |
|
self.auto = auto |
|
self.transforms = transforms |
|
self.vid_stride = vid_stride |
|
if any(videos): |
|
self._new_video(videos[0]) |
|
else: |
|
self.cap = None |
|
assert self.nf > 0, ( |
|
f"No images or videos found in {p}. " |
|
f"Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}" |
|
) |
|
|
|
def __iter__(self): |
|
"""Initializes iterator by resetting count and returns the iterator object itself.""" |
|
self.count = 0 |
|
return self |
|
|
|
def __next__(self): |
|
"""Advances to the next file in the dataset, raising StopIteration if at the end.""" |
|
if self.count == self.nf: |
|
raise StopIteration |
|
path = self.files[self.count] |
|
|
|
if self.video_flag[self.count]: |
|
|
|
self.mode = "video" |
|
for _ in range(self.vid_stride): |
|
self.cap.grab() |
|
ret_val, im0 = self.cap.retrieve() |
|
while not ret_val: |
|
self.count += 1 |
|
self.cap.release() |
|
if self.count == self.nf: |
|
raise StopIteration |
|
path = self.files[self.count] |
|
self._new_video(path) |
|
ret_val, im0 = self.cap.read() |
|
|
|
self.frame += 1 |
|
|
|
s = f"video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: " |
|
|
|
else: |
|
|
|
self.count += 1 |
|
im0 = cv2.imread(path) |
|
assert im0 is not None, f"Image Not Found {path}" |
|
s = f"image {self.count}/{self.nf} {path}: " |
|
|
|
if self.transforms: |
|
im = self.transforms(im0) |
|
else: |
|
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] |
|
im = im.transpose((2, 0, 1))[::-1] |
|
im = np.ascontiguousarray(im) |
|
|
|
return path, im, im0, self.cap, s |
|
|
|
def _new_video(self, path): |
|
"""Initializes a new video capture object with path, frame count adjusted by stride, and orientation |
|
metadata. |
|
""" |
|
self.frame = 0 |
|
self.cap = cv2.VideoCapture(path) |
|
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride) |
|
self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) |
|
|
|
|
|
def _cv2_rotate(self, im): |
|
"""Rotates a cv2 image based on its orientation; supports 0, 90, and 180 degrees rotations.""" |
|
if self.orientation == 0: |
|
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE) |
|
elif self.orientation == 180: |
|
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE) |
|
elif self.orientation == 90: |
|
return cv2.rotate(im, cv2.ROTATE_180) |
|
return im |
|
|
|
def __len__(self): |
|
"""Returns the number of files in the dataset.""" |
|
return self.nf |
|
|
|
|
|
class LoadStreams: |
|
|
|
def __init__(self, sources="file.streams", img_size=640, stride=32, auto=True, transforms=None, vid_stride=1): |
|
"""Initializes a stream loader for processing video streams with YOLOv5, supporting various sources including |
|
YouTube. |
|
""" |
|
torch.backends.cudnn.benchmark = True |
|
self.mode = "stream" |
|
self.img_size = img_size |
|
self.stride = stride |
|
self.vid_stride = vid_stride |
|
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources] |
|
n = len(sources) |
|
self.sources = [clean_str(x) for x in sources] |
|
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n |
|
for i, s in enumerate(sources): |
|
|
|
st = f"{i + 1}/{n}: {s}... " |
|
if urlparse(s).hostname in ("www.youtube.com", "youtube.com", "youtu.be"): |
|
|
|
check_requirements(("pafy", "youtube_dl==2020.12.2")) |
|
import pafy |
|
|
|
s = pafy.new(s).getbest(preftype="mp4").url |
|
s = eval(s) if s.isnumeric() else s |
|
if s == 0: |
|
assert not is_colab(), "--source 0 webcam unsupported on Colab. Rerun command in a local environment." |
|
assert not is_kaggle(), "--source 0 webcam unsupported on Kaggle. Rerun command in a local environment." |
|
cap = cv2.VideoCapture(s) |
|
assert cap.isOpened(), f"{st}Failed to open {s}" |
|
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float("inf") |
|
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 |
|
|
|
_, self.imgs[i] = cap.read() |
|
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True) |
|
LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)") |
|
self.threads[i].start() |
|
LOGGER.info("") |
|
|
|
|
|
s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs]) |
|
self.rect = np.unique(s, axis=0).shape[0] == 1 |
|
self.auto = auto and self.rect |
|
self.transforms = transforms |
|
if not self.rect: |
|
LOGGER.warning("WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.") |
|
|
|
def update(self, i, cap, stream): |
|
"""Reads frames from stream `i`, updating imgs array; handles stream reopening on signal loss.""" |
|
n, f = 0, self.frames[i] |
|
while cap.isOpened() and n < f: |
|
n += 1 |
|
cap.grab() |
|
if n % self.vid_stride == 0: |
|
success, im = cap.retrieve() |
|
if success: |
|
self.imgs[i] = im |
|
else: |
|
LOGGER.warning("WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.") |
|
self.imgs[i] = np.zeros_like(self.imgs[i]) |
|
cap.open(stream) |
|
time.sleep(0.0) |
|
|
|
def __iter__(self): |
|
"""Resets and returns the iterator for iterating over video frames or images in a dataset.""" |
|
self.count = -1 |
|
return self |
|
|
|
def __next__(self): |
|
"""Iterates over video frames or images, halting on thread stop or 'q' key press, raising `StopIteration` when |
|
done. |
|
""" |
|
self.count += 1 |
|
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord("q"): |
|
cv2.destroyAllWindows() |
|
raise StopIteration |
|
|
|
im0 = self.imgs.copy() |
|
if self.transforms: |
|
im = np.stack([self.transforms(x) for x in im0]) |
|
else: |
|
im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0]) |
|
im = im[..., ::-1].transpose((0, 3, 1, 2)) |
|
im = np.ascontiguousarray(im) |
|
|
|
return self.sources, im, im0, None, "" |
|
|
|
def __len__(self): |
|
"""Returns the number of sources in the dataset, supporting up to 32 streams at 30 FPS over 30 years.""" |
|
return len(self.sources) |
|
|
|
|
|
def img2label_paths(img_paths): |
|
"""Generates label file paths from corresponding image file paths by replacing `/images/` with `/labels/` and |
|
extension with `.txt`. |
|
""" |
|
sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}" |
|
return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths] |
|
|
|
|
|
class LoadImagesAndLabels(Dataset): |
|
|
|
cache_version = 0.6 |
|
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4] |
|
|
|
def __init__( |
|
self, |
|
path, |
|
img_size=640, |
|
batch_size=16, |
|
augment=False, |
|
hyp=None, |
|
rect=False, |
|
image_weights=False, |
|
cache_images=False, |
|
single_cls=False, |
|
stride=32, |
|
pad=0.0, |
|
min_items=0, |
|
prefix="", |
|
rank=-1, |
|
seed=0, |
|
): |
|
"""Initializes the YOLOv5 dataset loader, handling images and their labels, caching, and preprocessing.""" |
|
self.img_size = img_size |
|
self.augment = augment |
|
self.hyp = hyp |
|
self.image_weights = image_weights |
|
self.rect = False if image_weights else rect |
|
self.mosaic = self.augment and not self.rect |
|
self.mosaic_border = [-img_size // 2, -img_size // 2] |
|
self.stride = stride |
|
self.path = path |
|
self.albumentations = Albumentations(size=img_size) if augment else None |
|
|
|
try: |
|
f = [] |
|
for p in path if isinstance(path, list) else [path]: |
|
p = Path(p) |
|
if p.is_dir(): |
|
f += glob.glob(str(p / "**" / "*.*"), recursive=True) |
|
|
|
elif p.is_file(): |
|
with open(p) as t: |
|
t = t.read().strip().splitlines() |
|
parent = str(p.parent) + os.sep |
|
f += [x.replace("./", parent, 1) if x.startswith("./") else x for x in t] |
|
|
|
else: |
|
raise FileNotFoundError(f"{prefix}{p} does not exist") |
|
self.im_files = sorted(x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in IMG_FORMATS) |
|
|
|
assert self.im_files, f"{prefix}No images found" |
|
except Exception as e: |
|
raise Exception(f"{prefix}Error loading data from {path}: {e}\n{HELP_URL}") from e |
|
|
|
|
|
self.label_files = img2label_paths(self.im_files) |
|
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix(".cache") |
|
try: |
|
cache, exists = np.load(cache_path, allow_pickle=True).item(), True |
|
assert cache["version"] == self.cache_version |
|
assert cache["hash"] == get_hash(self.label_files + self.im_files) |
|
except Exception: |
|
cache, exists = self.cache_labels(cache_path, prefix), False |
|
|
|
|
|
nf, nm, ne, nc, n = cache.pop("results") |
|
if exists and LOCAL_RANK in {-1, 0}: |
|
d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt" |
|
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) |
|
if cache["msgs"]: |
|
LOGGER.info("\n".join(cache["msgs"])) |
|
assert nf > 0 or not augment, f"{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}" |
|
|
|
|
|
[cache.pop(k) for k in ("hash", "version", "msgs")] |
|
labels, shapes, self.segments = zip(*cache.values()) |
|
nl = len(np.concatenate(labels, 0)) |
|
assert nl > 0 or not augment, f"{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}" |
|
self.labels = list(labels) |
|
self.shapes = np.array(shapes) |
|
self.im_files = list(cache.keys()) |
|
self.label_files = img2label_paths(cache.keys()) |
|
|
|
|
|
if min_items: |
|
include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int) |
|
LOGGER.info(f"{prefix}{n - len(include)}/{n} images filtered from dataset") |
|
self.im_files = [self.im_files[i] for i in include] |
|
self.label_files = [self.label_files[i] for i in include] |
|
self.labels = [self.labels[i] for i in include] |
|
self.segments = [self.segments[i] for i in include] |
|
self.shapes = self.shapes[include] |
|
|
|
|
|
n = len(self.shapes) |
|
bi = np.floor(np.arange(n) / batch_size).astype(int) |
|
nb = bi[-1] + 1 |
|
self.batch = bi |
|
self.n = n |
|
self.indices = np.arange(n) |
|
if rank > -1: |
|
|
|
self.indices = self.indices[np.random.RandomState(seed=seed).permutation(n) % WORLD_SIZE == RANK] |
|
|
|
|
|
include_class = [] |
|
self.segments = list(self.segments) |
|
include_class_array = np.array(include_class).reshape(1, -1) |
|
for i, (label, segment) in enumerate(zip(self.labels, self.segments)): |
|
if include_class: |
|
j = (label[:, 0:1] == include_class_array).any(1) |
|
self.labels[i] = label[j] |
|
if segment: |
|
self.segments[i] = [segment[idx] for idx, elem in enumerate(j) if elem] |
|
if single_cls: |
|
self.labels[i][:, 0] = 0 |
|
|
|
|
|
if self.rect: |
|
|
|
s = self.shapes |
|
ar = s[:, 1] / s[:, 0] |
|
irect = ar.argsort() |
|
self.im_files = [self.im_files[i] for i in irect] |
|
self.label_files = [self.label_files[i] for i in irect] |
|
self.labels = [self.labels[i] for i in irect] |
|
self.segments = [self.segments[i] for i in irect] |
|
self.shapes = s[irect] |
|
ar = ar[irect] |
|
|
|
|
|
shapes = [[1, 1]] * nb |
|
for i in range(nb): |
|
ari = ar[bi == i] |
|
mini, maxi = ari.min(), ari.max() |
|
if maxi < 1: |
|
shapes[i] = [maxi, 1] |
|
elif mini > 1: |
|
shapes[i] = [1, 1 / mini] |
|
|
|
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride |
|
|
|
|
|
if cache_images == "ram" and not self.check_cache_ram(prefix=prefix): |
|
cache_images = False |
|
self.ims = [None] * n |
|
self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files] |
|
if cache_images: |
|
b, gb = 0, 1 << 30 |
|
self.im_hw0, self.im_hw = [None] * n, [None] * n |
|
fcn = self.cache_images_to_disk if cache_images == "disk" else self.load_image |
|
results = ThreadPool(NUM_THREADS).imap(lambda i: (i, fcn(i)), self.indices) |
|
pbar = tqdm(results, total=len(self.indices), bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0) |
|
for i, x in pbar: |
|
if cache_images == "disk": |
|
b += self.npy_files[i].stat().st_size |
|
else: |
|
self.ims[i], self.im_hw0[i], self.im_hw[i] = x |
|
b += self.ims[i].nbytes * WORLD_SIZE |
|
pbar.desc = f"{prefix}Caching images ({b / gb:.1f}GB {cache_images})" |
|
pbar.close() |
|
|
|
def check_cache_ram(self, safety_margin=0.1, prefix=""): |
|
"""Checks if available RAM is sufficient for caching images, adjusting for a safety margin.""" |
|
b, gb = 0, 1 << 30 |
|
n = min(self.n, 30) |
|
for _ in range(n): |
|
im = cv2.imread(random.choice(self.im_files)) |
|
ratio = self.img_size / max(im.shape[0], im.shape[1]) |
|
b += im.nbytes * ratio**2 |
|
mem_required = b * self.n / n |
|
mem = psutil.virtual_memory() |
|
cache = mem_required * (1 + safety_margin) < mem.available |
|
if not cache: |
|
LOGGER.info( |
|
f'{prefix}{mem_required / gb:.1f}GB RAM required, ' |
|
f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, ' |
|
f"{'caching images ✅' if cache else 'not caching images ⚠️'}" |
|
) |
|
return cache |
|
|
|
def cache_labels(self, path=Path("./labels.cache"), prefix=""): |
|
"""Caches dataset labels, verifies images, reads shapes, and tracks dataset integrity.""" |
|
x = {} |
|
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] |
|
desc = f"{prefix}Scanning {path.parent / path.stem}..." |
|
with Pool(NUM_THREADS) as pool: |
|
pbar = tqdm( |
|
pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))), |
|
desc=desc, |
|
total=len(self.im_files), |
|
bar_format=TQDM_BAR_FORMAT, |
|
) |
|
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar: |
|
nm += nm_f |
|
nf += nf_f |
|
ne += ne_f |
|
nc += nc_f |
|
if im_file: |
|
x[im_file] = [lb, shape, segments] |
|
if msg: |
|
msgs.append(msg) |
|
pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt" |
|
|
|
pbar.close() |
|
if msgs: |
|
LOGGER.info("\n".join(msgs)) |
|
if nf == 0: |
|
LOGGER.warning(f"{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}") |
|
x["hash"] = get_hash(self.label_files + self.im_files) |
|
x["results"] = nf, nm, ne, nc, len(self.im_files) |
|
x["msgs"] = msgs |
|
x["version"] = self.cache_version |
|
try: |
|
np.save(path, x) |
|
path.with_suffix(".cache.npy").rename(path) |
|
LOGGER.info(f"{prefix}New cache created: {path}") |
|
except Exception as e: |
|
LOGGER.warning(f"{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable: {e}") |
|
return x |
|
|
|
def __len__(self): |
|
"""Returns the number of images in the dataset.""" |
|
return len(self.im_files) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __getitem__(self, index): |
|
"""Fetches the dataset item at the given index, considering linear, shuffled, or weighted sampling.""" |
|
index = self.indices[index] |
|
|
|
hyp = self.hyp |
|
mosaic = self.mosaic and random.random() < hyp["mosaic"] |
|
if mosaic: |
|
|
|
img, labels = self.load_mosaic(index) |
|
shapes = None |
|
|
|
|
|
if random.random() < hyp["mixup"]: |
|
img, labels = mixup(img, labels, *self.load_mosaic(random.choice(self.indices))) |
|
|
|
else: |
|
|
|
img, (h0, w0), (h, w) = self.load_image(index) |
|
|
|
|
|
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size |
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) |
|
shapes = (h0, w0), ((h / h0, w / w0), pad) |
|
|
|
labels = self.labels[index].copy() |
|
if labels.size: |
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) |
|
|
|
if self.augment: |
|
img, labels = random_perspective( |
|
img, |
|
labels, |
|
degrees=hyp["degrees"], |
|
translate=hyp["translate"], |
|
scale=hyp["scale"], |
|
shear=hyp["shear"], |
|
perspective=hyp["perspective"], |
|
) |
|
|
|
nl = len(labels) |
|
if nl: |
|
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3) |
|
|
|
if self.augment: |
|
|
|
img, labels = self.albumentations(img, labels) |
|
nl = len(labels) |
|
|
|
|
|
augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"]) |
|
|
|
|
|
if random.random() < hyp["flipud"]: |
|
img = np.flipud(img) |
|
if nl: |
|
labels[:, 2] = 1 - labels[:, 2] |
|
|
|
|
|
if random.random() < hyp["fliplr"]: |
|
img = np.fliplr(img) |
|
if nl: |
|
labels[:, 1] = 1 - labels[:, 1] |
|
|
|
|
|
|
|
|
|
|
|
labels_out = torch.zeros((nl, 6)) |
|
if nl: |
|
labels_out[:, 1:] = torch.from_numpy(labels) |
|
|
|
|
|
img = img.transpose((2, 0, 1))[::-1] |
|
img = np.ascontiguousarray(img) |
|
|
|
return torch.from_numpy(img), labels_out, self.im_files[index], shapes |
|
|
|
def load_image(self, i): |
|
""" |
|
Loads an image by index, returning the image, its original dimensions, and resized dimensions. |
|
|
|
Returns (im, original hw, resized hw) |
|
""" |
|
im, f, fn = ( |
|
self.ims[i], |
|
self.im_files[i], |
|
self.npy_files[i], |
|
) |
|
if im is None: |
|
if fn.exists(): |
|
im = np.load(fn) |
|
else: |
|
im = cv2.imread(f) |
|
assert im is not None, f"Image Not Found {f}" |
|
h0, w0 = im.shape[:2] |
|
r = self.img_size / max(h0, w0) |
|
if r != 1: |
|
interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA |
|
im = cv2.resize(im, (math.ceil(w0 * r), math.ceil(h0 * r)), interpolation=interp) |
|
return im, (h0, w0), im.shape[:2] |
|
return self.ims[i], self.im_hw0[i], self.im_hw[i] |
|
|
|
def cache_images_to_disk(self, i): |
|
"""Saves an image to disk as an *.npy file for quicker loading, identified by index `i`.""" |
|
f = self.npy_files[i] |
|
if not f.exists(): |
|
np.save(f.as_posix(), cv2.imread(self.im_files[i])) |
|
|
|
def load_mosaic(self, index): |
|
"""Loads a 4-image mosaic for YOLOv5, combining 1 selected and 3 random images, with labels and segments.""" |
|
labels4, segments4 = [], [] |
|
s = self.img_size |
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) |
|
indices = [index] + random.choices(self.indices, k=3) |
|
random.shuffle(indices) |
|
for i, index in enumerate(indices): |
|
|
|
img, _, (h, w) = self.load_image(index) |
|
|
|
|
|
if i == 0: |
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h |
|
elif i == 1: |
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc |
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h |
|
elif i == 2: |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) |
|
elif i == 3: |
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) |
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] |
|
padw = x1a - x1b |
|
padh = y1a - y1b |
|
|
|
|
|
labels, segments = self.labels[index].copy(), self.segments[index].copy() |
|
if labels.size: |
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) |
|
segments = [xyn2xy(x, w, h, padw, padh) for x in segments] |
|
labels4.append(labels) |
|
segments4.extend(segments) |
|
|
|
|
|
labels4 = np.concatenate(labels4, 0) |
|
for x in (labels4[:, 1:], *segments4): |
|
np.clip(x, 0, 2 * s, out=x) |
|
|
|
|
|
|
|
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp["copy_paste"]) |
|
img4, labels4 = random_perspective( |
|
img4, |
|
labels4, |
|
segments4, |
|
degrees=self.hyp["degrees"], |
|
translate=self.hyp["translate"], |
|
scale=self.hyp["scale"], |
|
shear=self.hyp["shear"], |
|
perspective=self.hyp["perspective"], |
|
border=self.mosaic_border, |
|
) |
|
|
|
return img4, labels4 |
|
|
|
def load_mosaic9(self, index): |
|
"""Loads 1 image + 8 random images into a 9-image mosaic for augmented YOLOv5 training, returning labels and |
|
segments. |
|
""" |
|
labels9, segments9 = [], [] |
|
s = self.img_size |
|
indices = [index] + random.choices(self.indices, k=8) |
|
random.shuffle(indices) |
|
hp, wp = -1, -1 |
|
for i, index in enumerate(indices): |
|
|
|
img, _, (h, w) = self.load_image(index) |
|
|
|
|
|
if i == 0: |
|
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) |
|
h0, w0 = h, w |
|
c = s, s, s + w, s + h |
|
elif i == 1: |
|
c = s, s - h, s + w, s |
|
elif i == 2: |
|
c = s + wp, s - h, s + wp + w, s |
|
elif i == 3: |
|
c = s + w0, s, s + w0 + w, s + h |
|
elif i == 4: |
|
c = s + w0, s + hp, s + w0 + w, s + hp + h |
|
elif i == 5: |
|
c = s + w0 - w, s + h0, s + w0, s + h0 + h |
|
elif i == 6: |
|
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h |
|
elif i == 7: |
|
c = s - w, s + h0 - h, s, s + h0 |
|
elif i == 8: |
|
c = s - w, s + h0 - hp - h, s, s + h0 - hp |
|
|
|
padx, pady = c[:2] |
|
x1, y1, x2, y2 = (max(x, 0) for x in c) |
|
|
|
|
|
labels, segments = self.labels[index].copy(), self.segments[index].copy() |
|
if labels.size: |
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) |
|
segments = [xyn2xy(x, w, h, padx, pady) for x in segments] |
|
labels9.append(labels) |
|
segments9.extend(segments) |
|
|
|
|
|
img9[y1:y2, x1:x2] = img[y1 - pady :, x1 - padx :] |
|
hp, wp = h, w |
|
|
|
|
|
yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) |
|
img9 = img9[yc : yc + 2 * s, xc : xc + 2 * s] |
|
|
|
|
|
labels9 = np.concatenate(labels9, 0) |
|
labels9[:, [1, 3]] -= xc |
|
labels9[:, [2, 4]] -= yc |
|
c = np.array([xc, yc]) |
|
segments9 = [x - c for x in segments9] |
|
|
|
for x in (labels9[:, 1:], *segments9): |
|
np.clip(x, 0, 2 * s, out=x) |
|
|
|
|
|
|
|
img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp["copy_paste"]) |
|
img9, labels9 = random_perspective( |
|
img9, |
|
labels9, |
|
segments9, |
|
degrees=self.hyp["degrees"], |
|
translate=self.hyp["translate"], |
|
scale=self.hyp["scale"], |
|
shear=self.hyp["shear"], |
|
perspective=self.hyp["perspective"], |
|
border=self.mosaic_border, |
|
) |
|
|
|
return img9, labels9 |
|
|
|
@staticmethod |
|
def collate_fn(batch): |
|
"""Batches images, labels, paths, and shapes, assigning unique indices to targets in merged label tensor.""" |
|
im, label, path, shapes = zip(*batch) |
|
for i, lb in enumerate(label): |
|
lb[:, 0] = i |
|
return torch.stack(im, 0), torch.cat(label, 0), path, shapes |
|
|
|
@staticmethod |
|
def collate_fn4(batch): |
|
"""Bundles a batch's data by quartering the number of shapes and paths, preparing it for model input.""" |
|
im, label, path, shapes = zip(*batch) |
|
n = len(shapes) // 4 |
|
im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] |
|
|
|
ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]]) |
|
wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]]) |
|
s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) |
|
for i in range(n): |
|
i *= 4 |
|
if random.random() < 0.5: |
|
im1 = F.interpolate(im[i].unsqueeze(0).float(), scale_factor=2.0, mode="bilinear", align_corners=False)[ |
|
0 |
|
].type(im[i].type()) |
|
lb = label[i] |
|
else: |
|
im1 = torch.cat((torch.cat((im[i], im[i + 1]), 1), torch.cat((im[i + 2], im[i + 3]), 1)), 2) |
|
lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s |
|
im4.append(im1) |
|
label4.append(lb) |
|
|
|
for i, lb in enumerate(label4): |
|
lb[:, 0] = i |
|
|
|
return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4 |
|
|
|
|
|
|
|
def flatten_recursive(path=DATASETS_DIR / "coco128"): |
|
"""Flattens a directory by copying all files from subdirectories to a new top-level directory, preserving |
|
filenames. |
|
""" |
|
new_path = Path(f"{str(path)}_flat") |
|
if os.path.exists(new_path): |
|
shutil.rmtree(new_path) |
|
os.makedirs(new_path) |
|
for file in tqdm(glob.glob(f"{str(Path(path))}/**/*.*", recursive=True)): |
|
shutil.copyfile(file, new_path / Path(file).name) |
|
|
|
|
|
def extract_boxes(path=DATASETS_DIR / "coco128"): |
|
""" |
|
Converts a detection dataset to a classification dataset, creating a directory for each class and extracting |
|
bounding boxes. |
|
|
|
Example: from utils.dataloaders import *; extract_boxes() |
|
""" |
|
path = Path(path) |
|
shutil.rmtree(path / "classification") if (path / "classification").is_dir() else None |
|
files = list(path.rglob("*.*")) |
|
n = len(files) |
|
for im_file in tqdm(files, total=n): |
|
if im_file.suffix[1:] in IMG_FORMATS: |
|
|
|
im = cv2.imread(str(im_file))[..., ::-1] |
|
h, w = im.shape[:2] |
|
|
|
|
|
lb_file = Path(img2label_paths([str(im_file)])[0]) |
|
if Path(lb_file).exists(): |
|
with open(lb_file) as f: |
|
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) |
|
|
|
for j, x in enumerate(lb): |
|
c = int(x[0]) |
|
f = (path / "classification") / f"{c}" / f"{path.stem}_{im_file.stem}_{j}.jpg" |
|
if not f.parent.is_dir(): |
|
f.parent.mkdir(parents=True) |
|
|
|
b = x[1:] * [w, h, w, h] |
|
|
|
b[2:] = b[2:] * 1.2 + 3 |
|
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int) |
|
|
|
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) |
|
b[[1, 3]] = np.clip(b[[1, 3]], 0, h) |
|
assert cv2.imwrite(str(f), im[b[1] : b[3], b[0] : b[2]]), f"box failure in {f}" |
|
|
|
|
|
def autosplit(path=DATASETS_DIR / "coco128/images", weights=(0.9, 0.1, 0.0), annotated_only=False): |
|
"""Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files |
|
Usage: from utils.dataloaders import *; autosplit() |
|
Arguments |
|
path: Path to images directory |
|
weights: Train, val, test weights (list, tuple) |
|
annotated_only: Only use images with an annotated txt file |
|
""" |
|
path = Path(path) |
|
files = sorted(x for x in path.rglob("*.*") if x.suffix[1:].lower() in IMG_FORMATS) |
|
n = len(files) |
|
random.seed(0) |
|
indices = random.choices([0, 1, 2], weights=weights, k=n) |
|
|
|
txt = ["autosplit_train.txt", "autosplit_val.txt", "autosplit_test.txt"] |
|
for x in txt: |
|
if (path.parent / x).exists(): |
|
(path.parent / x).unlink() |
|
|
|
print(f"Autosplitting images from {path}" + ", using *.txt labeled images only" * annotated_only) |
|
for i, img in tqdm(zip(indices, files), total=n): |
|
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): |
|
with open(path.parent / txt[i], "a") as f: |
|
f.write(f"./{img.relative_to(path.parent).as_posix()}" + "\n") |
|
|
|
|
|
def verify_image_label(args): |
|
"""Verifies a single image-label pair, ensuring image format, size, and legal label values.""" |
|
im_file, lb_file, prefix = args |
|
nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, "", [] |
|
try: |
|
|
|
im = Image.open(im_file) |
|
im.verify() |
|
shape = exif_size(im) |
|
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels" |
|
assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}" |
|
if im.format.lower() in ("jpg", "jpeg"): |
|
with open(im_file, "rb") as f: |
|
f.seek(-2, 2) |
|
if f.read() != b"\xff\xd9": |
|
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100) |
|
msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved" |
|
|
|
|
|
if os.path.isfile(lb_file): |
|
nf = 1 |
|
with open(lb_file) as f: |
|
lb = [x.split() for x in f.read().strip().splitlines() if len(x)] |
|
if any(len(x) > 6 for x in lb): |
|
classes = np.array([x[0] for x in lb], dtype=np.float32) |
|
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] |
|
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) |
|
lb = np.array(lb, dtype=np.float32) |
|
nl = len(lb) |
|
if nl: |
|
assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected" |
|
assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}" |
|
assert (lb[:, 1:] <= 1).all(), f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}" |
|
_, i = np.unique(lb, axis=0, return_index=True) |
|
if len(i) < nl: |
|
lb = lb[i] |
|
if segments: |
|
segments = [segments[x] for x in i] |
|
msg = f"{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed" |
|
else: |
|
ne = 1 |
|
lb = np.zeros((0, 5), dtype=np.float32) |
|
else: |
|
nm = 1 |
|
lb = np.zeros((0, 5), dtype=np.float32) |
|
return im_file, lb, shape, segments, nm, nf, ne, nc, msg |
|
except Exception as e: |
|
nc = 1 |
|
msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}" |
|
return [None, None, None, None, nm, nf, ne, nc, msg] |
|
|
|
|
|
class HUBDatasetStats: |
|
""" |
|
Class for generating HUB dataset JSON and `-hub` dataset directory. |
|
|
|
Arguments |
|
path: Path to data.yaml or data.zip (with data.yaml inside data.zip) |
|
autodownload: Attempt to download dataset if not found locally |
|
|
|
Usage |
|
from utils.dataloaders import HUBDatasetStats |
|
stats = HUBDatasetStats('coco128.yaml', autodownload=True) # usage 1 |
|
stats = HUBDatasetStats('path/to/coco128.zip') # usage 2 |
|
stats.get_json(save=False) |
|
stats.process_images() |
|
""" |
|
|
|
def __init__(self, path="coco128.yaml", autodownload=False): |
|
"""Initializes HUBDatasetStats with optional auto-download for datasets, given a path to dataset YAML or ZIP |
|
file. |
|
""" |
|
zipped, data_dir, yaml_path = self._unzip(Path(path)) |
|
try: |
|
with open(check_yaml(yaml_path), errors="ignore") as f: |
|
data = yaml.safe_load(f) |
|
if zipped: |
|
data["path"] = data_dir |
|
except Exception as e: |
|
raise Exception("error/HUB/dataset_stats/yaml_load") from e |
|
|
|
check_dataset(data, autodownload) |
|
self.hub_dir = Path(data["path"] + "-hub") |
|
self.im_dir = self.hub_dir / "images" |
|
self.im_dir.mkdir(parents=True, exist_ok=True) |
|
self.stats = {"nc": data["nc"], "names": list(data["names"].values())} |
|
self.data = data |
|
|
|
@staticmethod |
|
def _find_yaml(dir): |
|
"""Finds and returns the path to a single '.yaml' file in the specified directory, preferring files that match |
|
the directory name. |
|
""" |
|
files = list(dir.glob("*.yaml")) or list(dir.rglob("*.yaml")) |
|
assert files, f"No *.yaml file found in {dir}" |
|
if len(files) > 1: |
|
files = [f for f in files if f.stem == dir.stem] |
|
assert files, f"Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed" |
|
assert len(files) == 1, f"Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}" |
|
return files[0] |
|
|
|
def _unzip(self, path): |
|
"""Unzips a .zip file at 'path', returning success status, unzipped directory, and path to YAML file within.""" |
|
if not str(path).endswith(".zip"): |
|
return False, None, path |
|
assert Path(path).is_file(), f"Error unzipping {path}, file not found" |
|
unzip_file(path, path=path.parent) |
|
dir = path.with_suffix("") |
|
assert dir.is_dir(), f"Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/" |
|
return True, str(dir), self._find_yaml(dir) |
|
|
|
def _hub_ops(self, f, max_dim=1920): |
|
"""Resizes and saves an image at reduced quality for web/app viewing, supporting both PIL and OpenCV.""" |
|
f_new = self.im_dir / Path(f).name |
|
try: |
|
im = Image.open(f) |
|
r = max_dim / max(im.height, im.width) |
|
if r < 1.0: |
|
im = im.resize((int(im.width * r), int(im.height * r))) |
|
im.save(f_new, "JPEG", quality=50, optimize=True) |
|
except Exception as e: |
|
LOGGER.info(f"WARNING ⚠️ HUB ops PIL failure {f}: {e}") |
|
im = cv2.imread(f) |
|
im_height, im_width = im.shape[:2] |
|
r = max_dim / max(im_height, im_width) |
|
if r < 1.0: |
|
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA) |
|
cv2.imwrite(str(f_new), im) |
|
|
|
def get_json(self, save=False, verbose=False): |
|
"""Generates dataset JSON for Ultralytics HUB, optionally saves or prints it; save=bool, verbose=bool.""" |
|
|
|
def _round(labels): |
|
"""Rounds class labels to integers and coordinates to 4 decimal places for improved label accuracy.""" |
|
return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels] |
|
|
|
for split in "train", "val", "test": |
|
if self.data.get(split) is None: |
|
self.stats[split] = None |
|
continue |
|
dataset = LoadImagesAndLabels(self.data[split]) |
|
x = np.array( |
|
[ |
|
np.bincount(label[:, 0].astype(int), minlength=self.data["nc"]) |
|
for label in tqdm(dataset.labels, total=dataset.n, desc="Statistics") |
|
] |
|
) |
|
self.stats[split] = { |
|
"instance_stats": {"total": int(x.sum()), "per_class": x.sum(0).tolist()}, |
|
"image_stats": { |
|
"total": dataset.n, |
|
"unlabelled": int(np.all(x == 0, 1).sum()), |
|
"per_class": (x > 0).sum(0).tolist(), |
|
}, |
|
"labels": [{str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)], |
|
} |
|
|
|
|
|
if save: |
|
stats_path = self.hub_dir / "stats.json" |
|
print(f"Saving {stats_path.resolve()}...") |
|
with open(stats_path, "w") as f: |
|
json.dump(self.stats, f) |
|
if verbose: |
|
print(json.dumps(self.stats, indent=2, sort_keys=False)) |
|
return self.stats |
|
|
|
def process_images(self): |
|
"""Compresses images for Ultralytics HUB across 'train', 'val', 'test' splits and saves to specified |
|
directory. |
|
""" |
|
for split in "train", "val", "test": |
|
if self.data.get(split) is None: |
|
continue |
|
dataset = LoadImagesAndLabels(self.data[split]) |
|
desc = f"{split} images" |
|
for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc): |
|
pass |
|
print(f"Done. All images saved to {self.im_dir}") |
|
return self.im_dir |
|
|
|
|
|
|
|
class ClassificationDataset(torchvision.datasets.ImageFolder): |
|
""" |
|
YOLOv5 Classification Dataset. |
|
|
|
Arguments |
|
root: Dataset path |
|
transform: torchvision transforms, used by default |
|
album_transform: Albumentations transforms, used if installed |
|
""" |
|
|
|
def __init__(self, root, augment, imgsz, cache=False): |
|
"""Initializes YOLOv5 Classification Dataset with optional caching, augmentations, and transforms for image |
|
classification. |
|
""" |
|
super().__init__(root=root) |
|
self.torch_transforms = classify_transforms(imgsz) |
|
self.album_transforms = classify_albumentations(augment, imgsz) if augment else None |
|
self.cache_ram = cache is True or cache == "ram" |
|
self.cache_disk = cache == "disk" |
|
self.samples = [list(x) + [Path(x[0]).with_suffix(".npy"), None] for x in self.samples] |
|
|
|
def __getitem__(self, i): |
|
"""Fetches and transforms an image sample by index, supporting RAM/disk caching and Augmentations.""" |
|
f, j, fn, im = self.samples[i] |
|
if self.cache_ram and im is None: |
|
im = self.samples[i][3] = cv2.imread(f) |
|
elif self.cache_disk: |
|
if not fn.exists(): |
|
np.save(fn.as_posix(), cv2.imread(f)) |
|
im = np.load(fn) |
|
else: |
|
im = cv2.imread(f) |
|
if self.album_transforms: |
|
sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"] |
|
else: |
|
sample = self.torch_transforms(im) |
|
return sample, j |
|
|
|
|
|
def create_classification_dataloader( |
|
path, imgsz=224, batch_size=16, augment=True, cache=False, rank=-1, workers=8, shuffle=True |
|
): |
|
|
|
"""Creates a DataLoader for image classification, supporting caching, augmentation, and distributed training.""" |
|
with torch_distributed_zero_first(rank): |
|
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache) |
|
batch_size = min(batch_size, len(dataset)) |
|
nd = torch.cuda.device_count() |
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) |
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) |
|
generator = torch.Generator() |
|
generator.manual_seed(6148914691236517205 + RANK) |
|
return InfiniteDataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
shuffle=shuffle and sampler is None, |
|
num_workers=nw, |
|
sampler=sampler, |
|
pin_memory=PIN_MEMORY, |
|
worker_init_fn=seed_worker, |
|
generator=generator, |
|
) |
|
|