|
|
|
"""Model validation metrics.""" |
|
|
|
import math |
|
import warnings |
|
from pathlib import Path |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
|
|
from yolov5.utils import TryExcept, threaded |
|
|
|
|
|
def fitness(x): |
|
"""Calculates fitness of a model using weighted sum of metrics P, R, [email protected], [email protected]:0.95.""" |
|
w = [0.0, 0.0, 0.1, 0.9] |
|
return (x[:, :4] * w).sum(1) |
|
|
|
|
|
def smooth(y, f=0.05): |
|
"""Applies box filter smoothing to array `y` with fraction `f`, yielding a smoothed array.""" |
|
nf = round(len(y) * f * 2) // 2 + 1 |
|
p = np.ones(nf // 2) |
|
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) |
|
return np.convolve(yp, np.ones(nf) / nf, mode="valid") |
|
|
|
|
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=".", names=(), eps=1e-16, prefix=""): |
|
""" |
|
Compute the average precision, given the recall and precision curves. |
|
|
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. |
|
# Arguments |
|
tp: True positives (nparray, nx1 or nx10). |
|
conf: Objectness value from 0-1 (nparray). |
|
pred_cls: Predicted object classes (nparray). |
|
target_cls: True object classes (nparray). |
|
plot: Plot precision-recall curve at [email protected] |
|
save_dir: Plot save directory |
|
# Returns |
|
The average precision as computed in py-faster-rcnn. |
|
""" |
|
|
|
|
|
i = np.argsort(-conf) |
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] |
|
|
|
|
|
unique_classes, nt = np.unique(target_cls, return_counts=True) |
|
nc = unique_classes.shape[0] |
|
|
|
|
|
px, py = np.linspace(0, 1, 1000), [] |
|
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) |
|
for ci, c in enumerate(unique_classes): |
|
i = pred_cls == c |
|
n_l = nt[ci] |
|
n_p = i.sum() |
|
if n_p == 0 or n_l == 0: |
|
continue |
|
|
|
|
|
fpc = (1 - tp[i]).cumsum(0) |
|
tpc = tp[i].cumsum(0) |
|
|
|
|
|
recall = tpc / (n_l + eps) |
|
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) |
|
|
|
|
|
precision = tpc / (tpc + fpc) |
|
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) |
|
|
|
|
|
for j in range(tp.shape[1]): |
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) |
|
if plot and j == 0: |
|
py.append(np.interp(px, mrec, mpre)) |
|
|
|
|
|
f1 = 2 * p * r / (p + r + eps) |
|
names = [v for k, v in names.items() if k in unique_classes] |
|
names = dict(enumerate(names)) |
|
if plot: |
|
plot_pr_curve(px, py, ap, Path(save_dir) / f"{prefix}PR_curve.png", names) |
|
plot_mc_curve(px, f1, Path(save_dir) / f"{prefix}F1_curve.png", names, ylabel="F1") |
|
plot_mc_curve(px, p, Path(save_dir) / f"{prefix}P_curve.png", names, ylabel="Precision") |
|
plot_mc_curve(px, r, Path(save_dir) / f"{prefix}R_curve.png", names, ylabel="Recall") |
|
|
|
i = smooth(f1.mean(0), 0.1).argmax() |
|
p, r, f1 = p[:, i], r[:, i], f1[:, i] |
|
tp = (r * nt).round() |
|
fp = (tp / (p + eps) - tp).round() |
|
return tp, fp, p, r, f1, ap, unique_classes.astype(int) |
|
|
|
|
|
def compute_ap(recall, precision): |
|
"""Compute the average precision, given the recall and precision curves |
|
# Arguments |
|
recall: The recall curve (list) |
|
precision: The precision curve (list) |
|
# Returns |
|
Average precision, precision curve, recall curve |
|
""" |
|
|
|
|
|
mrec = np.concatenate(([0.0], recall, [1.0])) |
|
mpre = np.concatenate(([1.0], precision, [0.0])) |
|
|
|
|
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) |
|
|
|
|
|
method = "interp" |
|
if method == "interp": |
|
x = np.linspace(0, 1, 101) |
|
ap = np.trapz(np.interp(x, mrec, mpre), x) |
|
else: |
|
i = np.where(mrec[1:] != mrec[:-1])[0] |
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
|
|
|
return ap, mpre, mrec |
|
|
|
|
|
class ConfusionMatrix: |
|
|
|
def __init__(self, nc, conf=0.25, iou_thres=0.45): |
|
"""Initializes ConfusionMatrix with given number of classes, confidence, and IoU threshold.""" |
|
self.matrix = np.zeros((nc + 1, nc + 1)) |
|
self.nc = nc |
|
self.conf = conf |
|
self.iou_thres = iou_thres |
|
|
|
def process_batch(self, detections, labels): |
|
""" |
|
Return intersection-over-union (Jaccard index) of boxes. |
|
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
Arguments: |
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class |
|
labels (Array[M, 5]), class, x1, y1, x2, y2 |
|
Returns: |
|
None, updates confusion matrix accordingly |
|
""" |
|
if detections is None: |
|
gt_classes = labels.int() |
|
for gc in gt_classes: |
|
self.matrix[self.nc, gc] += 1 |
|
return |
|
|
|
detections = detections[detections[:, 4] > self.conf] |
|
gt_classes = labels[:, 0].int() |
|
detection_classes = detections[:, 5].int() |
|
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
|
x = torch.where(iou > self.iou_thres) |
|
if x[0].shape[0]: |
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() |
|
if x[0].shape[0] > 1: |
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
else: |
|
matches = np.zeros((0, 3)) |
|
|
|
n = matches.shape[0] > 0 |
|
m0, m1, _ = matches.transpose().astype(int) |
|
for i, gc in enumerate(gt_classes): |
|
j = m0 == i |
|
if n and sum(j) == 1: |
|
self.matrix[detection_classes[m1[j]], gc] += 1 |
|
else: |
|
self.matrix[self.nc, gc] += 1 |
|
|
|
if n: |
|
for i, dc in enumerate(detection_classes): |
|
if not any(m1 == i): |
|
self.matrix[dc, self.nc] += 1 |
|
|
|
def tp_fp(self): |
|
"""Calculates true positives (tp) and false positives (fp) excluding the background class from the confusion |
|
matrix. |
|
""" |
|
tp = self.matrix.diagonal() |
|
fp = self.matrix.sum(1) - tp |
|
|
|
return tp[:-1], fp[:-1] |
|
|
|
@TryExcept("WARNING ⚠️ ConfusionMatrix plot failure") |
|
def plot(self, normalize=True, save_dir="", names=()): |
|
"""Plots confusion matrix using seaborn, optional normalization; can save plot to specified directory.""" |
|
import seaborn as sn |
|
|
|
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1) |
|
array[array < 0.005] = np.nan |
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True) |
|
nc, nn = self.nc, len(names) |
|
sn.set(font_scale=1.0 if nc < 50 else 0.8) |
|
labels = (0 < nn < 99) and (nn == nc) |
|
ticklabels = (names + ["background"]) if labels else "auto" |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
sn.heatmap( |
|
array, |
|
ax=ax, |
|
annot=nc < 30, |
|
annot_kws={"size": 8}, |
|
cmap="Blues", |
|
fmt=".2f", |
|
square=True, |
|
vmin=0.0, |
|
xticklabels=ticklabels, |
|
yticklabels=ticklabels, |
|
).set_facecolor((1, 1, 1)) |
|
ax.set_xlabel("True") |
|
ax.set_ylabel("Predicted") |
|
ax.set_title("Confusion Matrix") |
|
fig.savefig(Path(save_dir) / "confusion_matrix.png", dpi=250) |
|
plt.close(fig) |
|
|
|
def print(self): |
|
"""Prints the confusion matrix row-wise, with each class and its predictions separated by spaces.""" |
|
for i in range(self.nc + 1): |
|
print(" ".join(map(str, self.matrix[i]))) |
|
|
|
|
|
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): |
|
""" |
|
Calculates IoU, GIoU, DIoU, or CIoU between two boxes, supporting xywh/xyxy formats. |
|
|
|
Input shapes are box1(1,4) to box2(n,4). |
|
""" |
|
|
|
|
|
if xywh: |
|
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) |
|
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 |
|
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ |
|
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ |
|
else: |
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) |
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) |
|
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps) |
|
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps) |
|
|
|
|
|
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * ( |
|
b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1) |
|
).clamp(0) |
|
|
|
|
|
union = w1 * h1 + w2 * h2 - inter + eps |
|
|
|
|
|
iou = inter / union |
|
if CIoU or DIoU or GIoU: |
|
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) |
|
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) |
|
if CIoU or DIoU: |
|
c2 = cw**2 + ch**2 + eps |
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 |
|
if CIoU: |
|
v = (4 / math.pi**2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) |
|
with torch.no_grad(): |
|
alpha = v / (v - iou + (1 + eps)) |
|
return iou - (rho2 / c2 + v * alpha) |
|
return iou - rho2 / c2 |
|
c_area = cw * ch + eps |
|
return iou - (c_area - union) / c_area |
|
return iou |
|
|
|
|
|
def box_iou(box1, box2, eps=1e-7): |
|
|
|
""" |
|
Return intersection-over-union (Jaccard index) of boxes. |
|
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
Arguments: |
|
box1 (Tensor[N, 4]) |
|
box2 (Tensor[M, 4]) |
|
Returns: |
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise |
|
IoU values for every element in boxes1 and boxes2 |
|
""" |
|
|
|
|
|
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2) |
|
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2) |
|
|
|
|
|
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps) |
|
|
|
|
|
def bbox_ioa(box1, box2, eps=1e-7): |
|
""" |
|
Returns the intersection over box2 area given box1, box2. |
|
|
|
Boxes are x1y1x2y2 |
|
box1: np.array of shape(4) |
|
box2: np.array of shape(nx4) |
|
returns: np.array of shape(n) |
|
""" |
|
|
|
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1 |
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T |
|
|
|
|
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * ( |
|
np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1) |
|
).clip(0) |
|
|
|
|
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps |
|
|
|
|
|
return inter_area / box2_area |
|
|
|
|
|
def wh_iou(wh1, wh2, eps=1e-7): |
|
"""Calculates the Intersection over Union (IoU) for two sets of widths and heights; `wh1` and `wh2` should be nx2 |
|
and mx2 tensors. |
|
""" |
|
wh1 = wh1[:, None] |
|
wh2 = wh2[None] |
|
inter = torch.min(wh1, wh2).prod(2) |
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) |
|
|
|
|
|
|
|
|
|
|
|
@threaded |
|
def plot_pr_curve(px, py, ap, save_dir=Path("pr_curve.png"), names=()): |
|
"""Plots precision-recall curve, optionally per class, saving to `save_dir`; `px`, `py` are lists, `ap` is Nx2 |
|
array, `names` optional. |
|
""" |
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) |
|
py = np.stack(py, axis=1) |
|
|
|
if 0 < len(names) < 21: |
|
for i, y in enumerate(py.T): |
|
ax.plot(px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}") |
|
else: |
|
ax.plot(px, py, linewidth=1, color="grey") |
|
|
|
ax.plot(px, py.mean(1), linewidth=3, color="blue", label="all classes %.3f [email protected]" % ap[:, 0].mean()) |
|
ax.set_xlabel("Recall") |
|
ax.set_ylabel("Precision") |
|
ax.set_xlim(0, 1) |
|
ax.set_ylim(0, 1) |
|
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left") |
|
ax.set_title("Precision-Recall Curve") |
|
fig.savefig(save_dir, dpi=250) |
|
plt.close(fig) |
|
|
|
|
|
@threaded |
|
def plot_mc_curve(px, py, save_dir=Path("mc_curve.png"), names=(), xlabel="Confidence", ylabel="Metric"): |
|
"""Plots a metric-confidence curve for model predictions, supporting per-class visualization and smoothing.""" |
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) |
|
|
|
if 0 < len(names) < 21: |
|
for i, y in enumerate(py): |
|
ax.plot(px, y, linewidth=1, label=f"{names[i]}") |
|
else: |
|
ax.plot(px, py.T, linewidth=1, color="grey") |
|
|
|
y = smooth(py.mean(0), 0.05) |
|
ax.plot(px, y, linewidth=3, color="blue", label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}") |
|
ax.set_xlabel(xlabel) |
|
ax.set_ylabel(ylabel) |
|
ax.set_xlim(0, 1) |
|
ax.set_ylim(0, 1) |
|
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left") |
|
ax.set_title(f"{ylabel}-Confidence Curve") |
|
fig.savefig(save_dir, dpi=250) |
|
plt.close(fig) |
|
|