|
|
|
"""Model validation metrics.""" |
|
|
|
import numpy as np |
|
|
|
from ..metrics import ap_per_class |
|
|
|
|
|
def fitness(x): |
|
"""Evaluates model fitness by a weighted sum of 8 metrics, `x`: [N,8] array, weights: [0.1, 0.9] for mAP and F1.""" |
|
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9] |
|
return (x[:, :8] * w).sum(1) |
|
|
|
|
|
def ap_per_class_box_and_mask( |
|
tp_m, |
|
tp_b, |
|
conf, |
|
pred_cls, |
|
target_cls, |
|
plot=False, |
|
save_dir=".", |
|
names=(), |
|
): |
|
""" |
|
Args: |
|
tp_b: tp of boxes. |
|
tp_m: tp of masks. |
|
other arguments see `func: ap_per_class`. |
|
""" |
|
results_boxes = ap_per_class( |
|
tp_b, conf, pred_cls, target_cls, plot=plot, save_dir=save_dir, names=names, prefix="Box" |
|
)[2:] |
|
results_masks = ap_per_class( |
|
tp_m, conf, pred_cls, target_cls, plot=plot, save_dir=save_dir, names=names, prefix="Mask" |
|
)[2:] |
|
|
|
return { |
|
"boxes": { |
|
"p": results_boxes[0], |
|
"r": results_boxes[1], |
|
"ap": results_boxes[3], |
|
"f1": results_boxes[2], |
|
"ap_class": results_boxes[4], |
|
}, |
|
"masks": { |
|
"p": results_masks[0], |
|
"r": results_masks[1], |
|
"ap": results_masks[3], |
|
"f1": results_masks[2], |
|
"ap_class": results_masks[4], |
|
}, |
|
} |
|
|
|
|
|
class Metric: |
|
def __init__(self) -> None: |
|
"""Initializes performance metric attributes for precision, recall, F1 score, average precision, and class |
|
indices. |
|
""" |
|
self.p = [] |
|
self.r = [] |
|
self.f1 = [] |
|
self.all_ap = [] |
|
self.ap_class_index = [] |
|
|
|
@property |
|
def ap50(self): |
|
""" |
|
[email protected] of all classes. |
|
|
|
Return: |
|
(nc, ) or []. |
|
""" |
|
return self.all_ap[:, 0] if len(self.all_ap) else [] |
|
|
|
@property |
|
def ap(self): |
|
"""[email protected]:0.95 |
|
Return: |
|
(nc, ) or []. |
|
""" |
|
return self.all_ap.mean(1) if len(self.all_ap) else [] |
|
|
|
@property |
|
def mp(self): |
|
""" |
|
Mean precision of all classes. |
|
|
|
Return: |
|
float. |
|
""" |
|
return self.p.mean() if len(self.p) else 0.0 |
|
|
|
@property |
|
def mr(self): |
|
""" |
|
Mean recall of all classes. |
|
|
|
Return: |
|
float. |
|
""" |
|
return self.r.mean() if len(self.r) else 0.0 |
|
|
|
@property |
|
def map50(self): |
|
""" |
|
Mean [email protected] of all classes. |
|
|
|
Return: |
|
float. |
|
""" |
|
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0 |
|
|
|
@property |
|
def map(self): |
|
""" |
|
Mean [email protected]:0.95 of all classes. |
|
|
|
Return: |
|
float. |
|
""" |
|
return self.all_ap.mean() if len(self.all_ap) else 0.0 |
|
|
|
def mean_results(self): |
|
"""Mean of results, return mp, mr, map50, map.""" |
|
return (self.mp, self.mr, self.map50, self.map) |
|
|
|
def class_result(self, i): |
|
"""Class-aware result, return p[i], r[i], ap50[i], ap[i]""" |
|
return (self.p[i], self.r[i], self.ap50[i], self.ap[i]) |
|
|
|
def get_maps(self, nc): |
|
"""Calculates and returns mean Average Precision (mAP) for each class given number of classes `nc`.""" |
|
maps = np.zeros(nc) + self.map |
|
for i, c in enumerate(self.ap_class_index): |
|
maps[c] = self.ap[i] |
|
return maps |
|
|
|
def update(self, results): |
|
""" |
|
Args: |
|
results: tuple(p, r, ap, f1, ap_class) |
|
""" |
|
p, r, all_ap, f1, ap_class_index = results |
|
self.p = p |
|
self.r = r |
|
self.all_ap = all_ap |
|
self.f1 = f1 |
|
self.ap_class_index = ap_class_index |
|
|
|
|
|
class Metrics: |
|
"""Metric for boxes and masks.""" |
|
|
|
def __init__(self) -> None: |
|
"""Initializes Metric objects for bounding boxes and masks to compute performance metrics in the Metrics |
|
class. |
|
""" |
|
self.metric_box = Metric() |
|
self.metric_mask = Metric() |
|
|
|
def update(self, results): |
|
""" |
|
Args: |
|
results: Dict{'boxes': Dict{}, 'masks': Dict{}} |
|
""" |
|
self.metric_box.update(list(results["boxes"].values())) |
|
self.metric_mask.update(list(results["masks"].values())) |
|
|
|
def mean_results(self): |
|
"""Computes and returns the mean results for both box and mask metrics by summing their individual means.""" |
|
return self.metric_box.mean_results() + self.metric_mask.mean_results() |
|
|
|
def class_result(self, i): |
|
"""Returns the sum of box and mask metric results for a specified class index `i`.""" |
|
return self.metric_box.class_result(i) + self.metric_mask.class_result(i) |
|
|
|
def get_maps(self, nc): |
|
"""Calculates and returns the sum of mean average precisions (mAPs) for both box and mask metrics for `nc` |
|
classes. |
|
""" |
|
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc) |
|
|
|
@property |
|
def ap_class_index(self): |
|
"""Returns the class index for average precision, shared by both box and mask metrics.""" |
|
return self.metric_box.ap_class_index |
|
|
|
|
|
KEYS = [ |
|
"train/box_loss", |
|
"train/seg_loss", |
|
"train/obj_loss", |
|
"train/cls_loss", |
|
"metrics/precision(B)", |
|
"metrics/recall(B)", |
|
"metrics/mAP_0.5(B)", |
|
"metrics/mAP_0.5:0.95(B)", |
|
"metrics/precision(M)", |
|
"metrics/recall(M)", |
|
"metrics/mAP_0.5(M)", |
|
"metrics/mAP_0.5:0.95(M)", |
|
"val/box_loss", |
|
"val/seg_loss", |
|
"val/obj_loss", |
|
"val/cls_loss", |
|
"x/lr0", |
|
"x/lr1", |
|
"x/lr2", |
|
] |
|
|
|
BEST_KEYS = [ |
|
"best/epoch", |
|
"best/precision(B)", |
|
"best/recall(B)", |
|
"best/mAP_0.5(B)", |
|
"best/mAP_0.5:0.95(B)", |
|
"best/precision(M)", |
|
"best/recall(M)", |
|
"best/mAP_0.5(M)", |
|
"best/mAP_0.5:0.95(M)", |
|
] |
|
|