|
|
|
|
|
import contextlib |
|
import math |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
|
|
from .. import threaded |
|
from ..general import xywh2xyxy |
|
from ..plots import Annotator, colors |
|
|
|
|
|
@threaded |
|
def plot_images_and_masks(images, targets, masks, paths=None, fname="images.jpg", names=None): |
|
"""Plots a grid of images, their labels, and masks with optional resizing and annotations, saving to fname.""" |
|
if isinstance(images, torch.Tensor): |
|
images = images.cpu().float().numpy() |
|
if isinstance(targets, torch.Tensor): |
|
targets = targets.cpu().numpy() |
|
if isinstance(masks, torch.Tensor): |
|
masks = masks.cpu().numpy().astype(int) |
|
|
|
max_size = 1920 |
|
max_subplots = 16 |
|
bs, _, h, w = images.shape |
|
bs = min(bs, max_subplots) |
|
ns = np.ceil(bs**0.5) |
|
if np.max(images[0]) <= 1: |
|
images *= 255 |
|
|
|
|
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) |
|
for i, im in enumerate(images): |
|
if i == max_subplots: |
|
break |
|
x, y = int(w * (i // ns)), int(h * (i % ns)) |
|
im = im.transpose(1, 2, 0) |
|
mosaic[y : y + h, x : x + w, :] = im |
|
|
|
|
|
scale = max_size / ns / max(h, w) |
|
if scale < 1: |
|
h = math.ceil(scale * h) |
|
w = math.ceil(scale * w) |
|
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) |
|
|
|
|
|
fs = int((h + w) * ns * 0.01) |
|
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) |
|
for i in range(i + 1): |
|
x, y = int(w * (i // ns)), int(h * (i % ns)) |
|
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) |
|
if paths: |
|
annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) |
|
if len(targets) > 0: |
|
idx = targets[:, 0] == i |
|
ti = targets[idx] |
|
|
|
boxes = xywh2xyxy(ti[:, 2:6]).T |
|
classes = ti[:, 1].astype("int") |
|
labels = ti.shape[1] == 6 |
|
conf = None if labels else ti[:, 6] |
|
|
|
if boxes.shape[1]: |
|
if boxes.max() <= 1.01: |
|
boxes[[0, 2]] *= w |
|
boxes[[1, 3]] *= h |
|
elif scale < 1: |
|
boxes *= scale |
|
boxes[[0, 2]] += x |
|
boxes[[1, 3]] += y |
|
for j, box in enumerate(boxes.T.tolist()): |
|
cls = classes[j] |
|
color = colors(cls) |
|
cls = names[cls] if names else cls |
|
if labels or conf[j] > 0.25: |
|
label = f"{cls}" if labels else f"{cls} {conf[j]:.1f}" |
|
annotator.box_label(box, label, color=color) |
|
|
|
|
|
if len(masks): |
|
if masks.max() > 1.0: |
|
image_masks = masks[[i]] |
|
nl = len(ti) |
|
index = np.arange(nl).reshape(nl, 1, 1) + 1 |
|
image_masks = np.repeat(image_masks, nl, axis=0) |
|
image_masks = np.where(image_masks == index, 1.0, 0.0) |
|
else: |
|
image_masks = masks[idx] |
|
|
|
im = np.asarray(annotator.im).copy() |
|
for j, box in enumerate(boxes.T.tolist()): |
|
if labels or conf[j] > 0.25: |
|
color = colors(classes[j]) |
|
mh, mw = image_masks[j].shape |
|
if mh != h or mw != w: |
|
mask = image_masks[j].astype(np.uint8) |
|
mask = cv2.resize(mask, (w, h)) |
|
mask = mask.astype(bool) |
|
else: |
|
mask = image_masks[j].astype(bool) |
|
with contextlib.suppress(Exception): |
|
im[y : y + h, x : x + w, :][mask] = ( |
|
im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6 |
|
) |
|
annotator.fromarray(im) |
|
annotator.im.save(fname) |
|
|
|
|
|
def plot_results_with_masks(file="path/to/results.csv", dir="", best=True): |
|
""" |
|
Plots training results from CSV files, plotting best or last result highlights based on `best` parameter. |
|
|
|
Example: from utils.plots import *; plot_results('path/to/results.csv') |
|
""" |
|
save_dir = Path(file).parent if file else Path(dir) |
|
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True) |
|
ax = ax.ravel() |
|
files = list(save_dir.glob("results*.csv")) |
|
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot." |
|
for f in files: |
|
try: |
|
data = pd.read_csv(f) |
|
index = np.argmax( |
|
0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] + 0.1 * data.values[:, 11] |
|
) |
|
s = [x.strip() for x in data.columns] |
|
x = data.values[:, 0] |
|
for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]): |
|
y = data.values[:, j] |
|
|
|
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=2) |
|
if best: |
|
|
|
ax[i].scatter(index, y[index], color="r", label=f"best:{index}", marker="*", linewidth=3) |
|
ax[i].set_title(s[j] + f"\n{round(y[index], 5)}") |
|
else: |
|
|
|
ax[i].scatter(x[-1], y[-1], color="r", label="last", marker="*", linewidth=3) |
|
ax[i].set_title(s[j] + f"\n{round(y[-1], 5)}") |
|
|
|
|
|
except Exception as e: |
|
print(f"Warning: Plotting error for {f}: {e}") |
|
ax[1].legend() |
|
fig.savefig(save_dir / "results.png", dpi=200) |
|
plt.close() |
|
|