basilshaji
commited on
Delete app11.py
Browse files
app11.py
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import cv2
|
3 |
-
import requests
|
4 |
-
import os
|
5 |
-
import torch
|
6 |
-
from yolov5.models.experimental import attempt_load
|
7 |
-
from yolov5.utils.general import non_max_suppression
|
8 |
-
import yolov5.utils.plots
|
9 |
-
import yolov5.utils.plots
|
10 |
-
dir(yolov5.utils.plots)
|
11 |
-
|
12 |
-
file_urls = [
|
13 |
-
"https://www.dropbox.com/scl/fi/n3bs5xnl2kanqmwv483k3/1_jpg.rf.4a59a63d0a7339d280dd18ef3c2e675a.jpg?rlkey=4n9dnls1byb4wm54ycxzx3ovi&st=ue5xv8yx&dl=0",
|
14 |
-
"https://www.dropbox.com/scl/fi/asrmao4b4fpsrhqex8kog/2_jpg.rf.b87583d95aa220d4b7b532ae1948e7b7.jpg?rlkey=jkmux5jjy8euzhxizupdmpesb&st=v3ld14tx&dl=0",
|
15 |
-
"https://www.dropbox.com/scl/fi/fi0e8zxqqy06asnu0robz/3_jpg.rf.d2932cce7e88c2675e300ececf9f1b82.jpg?rlkey=hfdqwxkxetabe38ukzbb39pl5&st=ga1uouhj&dl=0",
|
16 |
-
"https://www.dropbox.com/scl/fi/ruobyat1ld1c33ch5yjpv/4_jpg.rf.3395c50b4db0ec0ed3448276965b2459.jpg?rlkey=j1m4qa0pmdh3rlr344v82u3am&st=lex8h3qi&dl=0",
|
17 |
-
"https://www.dropbox.com/scl/fi/ok3izk4jj1pg6psxja3aj/5_jpg.rf.62f3dc64b6c894fbb165d8f6e2ee1382.jpg?rlkey=euu16z8fd8u8za4aflvu5qg4v&st=pwno39nc&dl=0",
|
18 |
-
"https://www.dropbox.com/scl/fi/8r1fpwxkwq7c2i6ky6qv5/10_jpg.rf.c1785c33dd3552e860bf043c2fd0a379.jpg?rlkey=fcw41ppgzu0ao7xo6ijbpdi4c&st=to2udvxb&dl=0",
|
19 |
-
"https://www.dropbox.com/scl/fi/ihiid7hbz1vvaoqrstwa5/7_jpg.rf.dfc30f9dc198cf6697d9023ac076e822.jpg?rlkey=yh67p4ex52wn9t0bfw0jr77ef&st=02qw80xa&dl=0",
|
20 |
-
]
|
21 |
-
|
22 |
-
def download_file(url, save_name):
|
23 |
-
if not os.path.exists(save_name):
|
24 |
-
file = requests.get(url)
|
25 |
-
open(save_name,'wb').write(file.content)
|
26 |
-
|
27 |
-
# Download files
|
28 |
-
for i, url in enumerate(file_urls):
|
29 |
-
if "mp4" in url:
|
30 |
-
download_file(url, "video.mp4")
|
31 |
-
else:
|
32 |
-
download_file(url, f"image_{i}.jpg")
|
33 |
-
|
34 |
-
# Load YOLOv5 model
|
35 |
-
model_path = "best.pt"
|
36 |
-
model = attempt_load(model_path, device=torch.device('cpu'))
|
37 |
-
|
38 |
-
def show_preds_image(image_path):
|
39 |
-
img0 = cv2.imread(image_path) # Open image
|
40 |
-
|
41 |
-
# Inference
|
42 |
-
results = model(img0) # Pass image to model
|
43 |
-
|
44 |
-
# Process detections
|
45 |
-
for i, det in enumerate(results.pred[0]):
|
46 |
-
# Draw bounding boxes
|
47 |
-
plot_one_box(det.cpu().numpy(), img0, color=(0, 0, 255), line_thickness=2)
|
48 |
-
|
49 |
-
return cv2.cvtColor(img0, cv2.COLOR_BGR2RGB)
|
50 |
-
|
51 |
-
inputs_image = [
|
52 |
-
gr.inputs.Image(type="file", label="Input Image"),
|
53 |
-
]
|
54 |
-
outputs_image = [
|
55 |
-
gr.outputs.Image(type="numpy", label="Output Image"),
|
56 |
-
]
|
57 |
-
|
58 |
-
interface_image = gr.Interface(
|
59 |
-
fn=show_preds_image,
|
60 |
-
inputs=inputs_image,
|
61 |
-
outputs=outputs_image,
|
62 |
-
title="YOLOv5 Object Detection",
|
63 |
-
examples=[["image_0.jpg"], ["image_1.jpg"]],
|
64 |
-
live=False,
|
65 |
-
)
|
66 |
-
|
67 |
-
interface_image.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|