File size: 4,188 Bytes
a97d86f e120afe a97d86f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
"""Some utility functions for the app."""
from base64 import b64encode
from io import BytesIO
from gtts import gTTS
from mtranslate import translate
from speech_recognition import AudioFile, Recognizer
from transformers import (BlenderbotSmallForConditionalGeneration,
BlenderbotSmallTokenizer)
def stt(audio: object, language: str) -> str:
"""Converts speech to text.
Args:
audio: record of user speech
Returns:
text (str): recognized speech of user
"""
# Create a Recognizer object
r = Recognizer()
# Open the audio file
with AudioFile(audio) as source:
# Listen for the data (load audio to memory)
audio_data = r.record(source)
# Transcribe the audio using Google's speech-to-text API
text = r.recognize_google(audio_data, language=language)
return text
def to_en_translation(text: str, language: str) -> str:
"""Translates text from specified language to English.
Args:
text (str): input text
language (str): desired language
Returns:
str: translated text
"""
return translate(text, "en", language)
def from_en_translation(text: str, language: str) -> str:
"""Translates text from english to specified language.
Args:
text (str): input text
language (str): desired language
Returns:
str: translated text
"""
return translate(text, language, "en")
class TextGenerationPipeline:
"""Pipeline for text generation of blenderbot model.
Returns:
str: generated text
"""
# load tokenizer and the model
model_name = "facebook/blenderbot_small-90M"
tokenizer = BlenderbotSmallTokenizer.from_pretrained(model_name)
model = BlenderbotSmallForConditionalGeneration.from_pretrained(model_name)
def __init__(self, **kwargs):
"""Specififying text generation parameters.
For example: max_length=100 which generates text shorter than
100 tokens. Visit:
https://huggingface.co/docs/transformers/main_classes/text_generation
for more parameters
"""
self.__dict__.update(kwargs)
def preprocess(self, text) -> str:
"""Tokenizes input text.
Args:
text (str): user specified text
Returns:
torch.Tensor (obj): text representation as tensors
"""
return self.tokenizer(text, return_tensors="pt")
def postprocess(self, outputs) -> str:
"""Converts tensors into text.
Args:
outputs (torch.Tensor obj): model text generation output
Returns:
str: generated text
"""
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
def __call__(self, text: str) -> str:
"""Generates text from input text.
Args:
text (str): user specified text
Returns:
str: generated text
"""
tokenized_text = self.preprocess(text)
output = self.model.generate(**tokenized_text, **self.__dict__)
return self.postprocess(output)
def tts(text: str, language: str) -> object:
"""Converts text into audio object.
Args:
text (str): generated answer of bot
Returns:
object: text to speech object
"""
print("Audio output : " + text)
return gTTS(text=text, lang=language, slow=False)
def tts_to_bytesio(tts_object: object) -> bytes:
"""Converts tts object to bytes.
Args:
tts_object (object): audio object obtained from gtts
Returns:
bytes: audio bytes
"""
bytes_object = BytesIO()
tts_object.write_to_fp(bytes_object)
bytes_object.seek(0)
return bytes_object.getvalue()
def html_audio_autoplay(bytes: bytes) -> object:
"""Creates html object for autoplaying audio at gradio app.
Args:
bytes (bytes): audio bytes
Returns:
object: html object that provides audio autoplaying
"""
b64 = b64encode(bytes).decode()
html = f"""
<audio controls autoplay>
<source src="data:audio/wav;base64,{b64}" type="audio/wav">
</audio>
"""
return html |