File size: 4,188 Bytes
a97d86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e120afe
a97d86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""Some utility functions for the app."""
from base64 import b64encode
from io import BytesIO

from gtts import gTTS
from mtranslate import translate
from speech_recognition import AudioFile, Recognizer
from transformers import (BlenderbotSmallForConditionalGeneration,
                          BlenderbotSmallTokenizer)


def stt(audio: object, language: str) -> str:
    """Converts speech to text.

    Args:
        audio: record of user speech

    Returns:
        text (str): recognized speech of user
    """
    
    # Create a Recognizer object
    r = Recognizer()
    # Open the audio file
    with AudioFile(audio) as source:
        # Listen for the data (load audio to memory)
        audio_data = r.record(source)
        # Transcribe the audio using Google's speech-to-text API
        text = r.recognize_google(audio_data, language=language)
    return text


def to_en_translation(text: str, language: str) -> str:
    """Translates text from specified language to English.

    Args:
        text (str): input text
        language (str): desired language

    Returns:
        str: translated text
    """
    return translate(text, "en", language)


def from_en_translation(text: str, language: str) -> str:
    """Translates text from english to specified language.

    Args:
        text (str): input text
        language (str): desired language

    Returns:
        str: translated text
    """
    return translate(text, language, "en")


class TextGenerationPipeline:
    """Pipeline for text generation of blenderbot model.

    Returns:
        str: generated text
    """

    # load tokenizer and the model
    model_name = "facebook/blenderbot_small-90M"
    tokenizer = BlenderbotSmallTokenizer.from_pretrained(model_name)
    model = BlenderbotSmallForConditionalGeneration.from_pretrained(model_name)

    def __init__(self, **kwargs):
        """Specififying text generation parameters.

        For example: max_length=100 which generates text shorter than
        100 tokens. Visit:
        https://huggingface.co/docs/transformers/main_classes/text_generation
        for more parameters
        """
        self.__dict__.update(kwargs)

    def preprocess(self, text) -> str:
        """Tokenizes input text.

        Args:
            text (str): user specified text

        Returns:
            torch.Tensor (obj): text representation as tensors
        """
        return self.tokenizer(text, return_tensors="pt")

    def postprocess(self, outputs) -> str:
        """Converts tensors into text.

        Args:
            outputs (torch.Tensor obj): model text generation output

        Returns:
            str: generated text
        """
        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

    def __call__(self, text: str) -> str:
        """Generates text from input text.

        Args:
            text (str): user specified text

        Returns:
            str: generated text
        """
        tokenized_text = self.preprocess(text)
        output = self.model.generate(**tokenized_text, **self.__dict__)
        return self.postprocess(output)


def tts(text: str, language: str) -> object:
    """Converts text into audio object.

    Args:
        text (str): generated answer of bot

    Returns:
        object: text to speech object
    """
    print("Audio output : " + text)
    return gTTS(text=text, lang=language, slow=False)


def tts_to_bytesio(tts_object: object) -> bytes:
    """Converts tts object to bytes.

    Args:
        tts_object (object): audio object obtained from gtts

    Returns:
        bytes: audio bytes
    """
    bytes_object = BytesIO()
    tts_object.write_to_fp(bytes_object)
    bytes_object.seek(0)
    return bytes_object.getvalue()


def html_audio_autoplay(bytes: bytes) -> object:
    """Creates html object for autoplaying audio at gradio app.

    Args:
        bytes (bytes): audio bytes

    Returns:
        object: html object that provides audio autoplaying
    """
    b64 = b64encode(bytes).decode()
    html = f"""
    <audio controls autoplay>
    <source src="data:audio/wav;base64,{b64}" type="audio/wav">
    </audio>
    """
    return html