RohitGandikota commited on
Commit
99a36aa
·
1 Parent(s): 1e14cf1

final commit before release

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -36,7 +36,7 @@ model_map = {
36
  ORIGINAL_SPACE_ID = 'baulab/ConceptSliders'
37
  SPACE_ID = os.getenv('SPACE_ID')
38
 
39
- SHARED_UI_WARNING = f'''## Attention - Training does not work in this shared UI. You can either duplicate and use it with a gpu with at least 40GB, or clone this repository to run on your own machine.
40
  <center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
41
  '''
42
 
@@ -77,10 +77,10 @@ class Demo:
77
  with gr.Column(scale=1):
78
 
79
  self.prompt_input_infr = gr.Text(
80
- placeholder="photo of a person, realistic, 8k",
81
  label="Prompt",
82
  info="Prompt to generate",
83
- value="photo of a person, realistic, 8k"
84
  )
85
 
86
  with gr.Row():
@@ -101,7 +101,7 @@ class Demo:
101
  -6,
102
  6,
103
  label="Slider Scale",
104
- value=2,
105
  info="Larger slider scale result in stronger edit"
106
  )
107
 
@@ -137,7 +137,7 @@ class Demo:
137
 
138
  with gr.Row():
139
 
140
- self.explain_train= gr.Markdown(value='In this part you can train a concept slider for Stable Diffusion XL. Enter a target concept you wish to make an edit on. Next, enter a enhance prompt of the attribute you wish to edit (for controlling age of a person, enter "person, old"). Then, type the supress prompt of the attribute (for our example, enter "person, young"). Then press "train" button. With default settings, it takes about 15 minutes to train a slider; then you can try inference above or download the weights. Code and details are at [github link](https://github.com/rohitgandikota/sliders).')
141
 
142
  with gr.Row():
143
 
@@ -179,12 +179,12 @@ class Demo:
179
  label="Rank of the Slider",
180
  info='Slider Rank to train'
181
  )
182
- choices = ['xattn', 'noxattn', 'full']
183
  self.train_method_input = gr.Dropdown(
184
  choices=choices,
185
  value='xattn',
186
  label='Train Method',
187
- info='Method of training. If xattn - loras will be on cross attns only. noxattn - all layers except cross attn (official implementation). full - all layers',
188
  interactive=True
189
  )
190
  self.iterations_input = gr.Number(
@@ -243,9 +243,9 @@ class Demo:
243
  print(target_concept, positive_prompt, negative_prompt, attributes_input, is_person)
244
 
245
  randn = torch.randint(1, 10000000, (1,)).item()
246
- save_name = f"{randn}_{target_concept.replace(',','').replace(' ','').replace('.','')[:10]}_{positive_prompt.replace(',','').replace(' ','').replace('.','')[:10]}"
247
  save_name += f'_alpha-{1}'
248
- save_name += f'_noxattn'
249
  save_name += f'_rank_{int(rank)}.pt'
250
 
251
  # if torch.cuda.get_device_properties(0).total_memory * 1e-9 < 40:
 
36
  ORIGINAL_SPACE_ID = 'baulab/ConceptSliders'
37
  SPACE_ID = os.getenv('SPACE_ID')
38
 
39
+ SHARED_UI_WARNING = f'''## Attention - Training could be slow in this shared UI. You can alternatively duplicate and use it with a gpu with at least 40GB, or clone this repository to run on your own machine.
40
  <center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
41
  '''
42
 
 
77
  with gr.Column(scale=1):
78
 
79
  self.prompt_input_infr = gr.Text(
80
+ placeholder="photo of a person with bokeh background at night, realistic, 8k",
81
  label="Prompt",
82
  info="Prompt to generate",
83
+ value="photo of a person with bokeh background at night, realistic, 8k"
84
  )
85
 
86
  with gr.Row():
 
101
  -6,
102
  6,
103
  label="Slider Scale",
104
+ value=3,
105
  info="Larger slider scale result in stronger edit"
106
  )
107
 
 
137
 
138
  with gr.Row():
139
 
140
+ self.explain_train= gr.Markdown(value='In this part you can train a textual concept sliders for Stable Diffusion XL. Enter a target concept you wish to make an edit on (eg. person). Next, enter a enhance prompt of the attribute you wish to edit (for controlling age of a person, enter "person, old"). Then, type the supress prompt of the attribute (for our example, enter "person, young"). Then press "train" button. With default settings, it takes about 25 minutes to train a slider; then you can try inference above or download the weights. For faster training, please duplicate the repo and train with A100 or larger GPU. Code and details are at [github link](https://github.com/rohitgandikota/sliders).')
141
 
142
  with gr.Row():
143
 
 
179
  label="Rank of the Slider",
180
  info='Slider Rank to train'
181
  )
182
+ choices = ['xattn', 'noxattn']
183
  self.train_method_input = gr.Dropdown(
184
  choices=choices,
185
  value='xattn',
186
  label='Train Method',
187
+ info='Method of training. If [* xattn *] - loras will be on cross attns only. [* noxattn *] (official implementation) - all layers except cross attn',
188
  interactive=True
189
  )
190
  self.iterations_input = gr.Number(
 
243
  print(target_concept, positive_prompt, negative_prompt, attributes_input, is_person)
244
 
245
  randn = torch.randint(1, 10000000, (1,)).item()
246
+ save_name = f"{randn}_{positive_prompt.replace(',','').replace(' ','').replace('.','')[:20]}"
247
  save_name += f'_alpha-{1}'
248
+ save_name += f'_{train_method_input}'
249
  save_name += f'_rank_{int(rank)}.pt'
250
 
251
  # if torch.cuda.get_device_properties(0).total_memory * 1e-9 < 40: