RohitGandikota commited on
Commit
9ab9acf
·
1 Parent(s): 675f687

fixing inference

Browse files
Files changed (1) hide show
  1. app.py +2 -6
app.py CHANGED
@@ -40,7 +40,7 @@ class Demo:
40
  self.device = 'cuda'
41
  self.weight_dtype = torch.float16
42
  self.pipe = StableDiffusionXLPipeline.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=self.weight_dtype).to(self.device)
43
-
44
  with gr.Blocks() as demo:
45
  self.layout()
46
  demo.queue().launch(share=True, max_threads=3)
@@ -280,10 +280,6 @@ class Demo:
280
  alpha = 1
281
  if 'rank' in model_path:
282
  rank = int(model_path.split('_')[-1].replace('.pt',''))
283
- # if 'rank4' in model_path:
284
- # rank = 4
285
- # if 'rank8' in model_path:
286
- # rank = 8
287
  if 'alpha1' in model_path:
288
  alpha = 1.0
289
  network = LoRANetwork(
@@ -297,7 +293,7 @@ class Demo:
297
 
298
 
299
  generator = torch.manual_seed(seed)
300
- edited_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=50, generator=generator, network=network, start_noise=start_noise, scale=scale, unet=unet).images[0]
301
 
302
  generator = torch.manual_seed(seed)
303
  original_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=50, generator=generator, network=network, start_noise=start_noise, scale=0, unet=unet).images[0]
 
40
  self.device = 'cuda'
41
  self.weight_dtype = torch.float16
42
  self.pipe = StableDiffusionXLPipeline.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=self.weight_dtype).to(self.device)
43
+ self.pipe.enable_xformers_memory_efficient_attention()
44
  with gr.Blocks() as demo:
45
  self.layout()
46
  demo.queue().launch(share=True, max_threads=3)
 
280
  alpha = 1
281
  if 'rank' in model_path:
282
  rank = int(model_path.split('_')[-1].replace('.pt',''))
 
 
 
 
283
  if 'alpha1' in model_path:
284
  alpha = 1.0
285
  network = LoRANetwork(
 
293
 
294
 
295
  generator = torch.manual_seed(seed)
296
+ edited_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=50, generator=generator, network=network, start_noise=int(start_noise), scale=float(scale), unet=unet).images[0]
297
 
298
  generator = torch.manual_seed(seed)
299
  original_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=50, generator=generator, network=network, start_noise=start_noise, scale=0, unet=unet).images[0]