File size: 13,008 Bytes
92e0882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6467917
 
92e0882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""
modified from from https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/ip_adapter.py
"""
import os
from typing import List
import torch
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
import alpha_clip
from .utils import get_generator
from .attention_processor import AttnProcessor, IPAttnProcessor
from safetensors import safe_open
from safetensors.torch import load_model
import numpy as np

import torch.nn as nn


class ImageProjModel(torch.nn.Module):
    """Projection Model of IP-Adapter"""

    def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
        super().__init__()

        self.generator = None
        self.cross_attention_dim = cross_attention_dim
        self.clip_extra_context_tokens = clip_extra_context_tokens
        self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
        self.norm = torch.nn.LayerNorm(cross_attention_dim)

    def forward(self, image_embeds):
        embeds = image_embeds
        clip_extra_context_tokens = self.proj(embeds).reshape(
            -1, self.clip_extra_context_tokens, self.cross_attention_dim
        )
        clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
        return clip_extra_context_tokens

class CLIPAway:
    def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, alpha_clip_path, config, device, alpha_clip_id="ViT-L/14", num_tokens=4):
        super().__init__()        
        self.device = device
        self.ipadapter_image_encoder_path = image_encoder_path
        self.ipadapter_ckpt = ip_ckpt
        self.num_tokens = num_tokens

        self.pipe = sd_pipe.to(self.device)
        self.set_ip_adapter()
        alpha_clip_model, alpha_clip_preprocess = alpha_clip.load(alpha_clip_id, alpha_vision_ckpt_pth=alpha_clip_path, device=device)

        # load image encoder
        self.image_encoder = alpha_clip_model.visual.to(self.device, dtype=torch.float32)
        
        self.clip_proj = CLIPVisionModelWithProjection.from_pretrained(self.ipadapter_image_encoder_path).to(
            self.device, dtype=torch.float32
        )
        self.alpha_clip_image_processor = alpha_clip_preprocess
        
        # preprocess mask transformation for alpha clip
        if "@336" in alpha_clip_id:
            self.mask_transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Resize((336, 336)), # change to (336,336) when using ViT-L/14@336px
                transforms.Normalize(0.5, 0.26)
            ])
        else:
            self.mask_transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Resize((224, 224)), # change to (336,336) when using ViT-L/14@336px
                transforms.Normalize(0.5, 0.26)
            ])
        # image proj model
        self.image_proj_model = self.init_proj()

        self.load_ip_adapter()
        self.mlp_projection_layer = self.generate_projection_layer(config)
        
        print(config.mlp_projection_layer_ckpt_path, type(config.mlp_projection_layer_ckpt_path) )
        if config.mlp_projection_layer_ckpt_path is not None:
            self.load_projection_layer(config.mlp_projection_layer_ckpt_path)
        
    def load_projection_layer(self, path):
        load_model(self.mlp_projection_layer, path)
        print("Projection layer loaded from", path)
        
    def generate_projection_layer(self, config):
        projection_layer = nn.ModuleList()
        
        for i in range(config.number_of_hidden_layers):
            if i < config.number_of_hidden_layers // 2:
                projection_layer.append(nn.Linear(config.alpha_clip_embed_dim, config.alpha_clip_embed_dim))
                projection_layer.append(nn.LayerNorm(config.alpha_clip_embed_dim))
            elif i == config.number_of_hidden_layers // 2:
                projection_layer.append(nn.Linear(config.alpha_clip_embed_dim, config.ip_adapter_embed_dim))
                projection_layer.append(nn.LayerNorm(config.ip_adapter_embed_dim))
            else:
                projection_layer.append(nn.Linear(config.ip_adapter_embed_dim, config.ip_adapter_embed_dim))
                projection_layer.append(nn.LayerNorm(config.ip_adapter_embed_dim))
            projection_layer.append(nn.GELU())
            
        projection_layer.append(nn.Linear(config.ip_adapter_embed_dim, config.ip_adapter_embed_dim))
        
        return nn.Sequential(*projection_layer).to(self.device).to(torch.float32)
    
    def init_proj(self):
        image_proj_model = ImageProjModel(
            cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
            clip_embeddings_dim=self.clip_proj.config.projection_dim,
            clip_extra_context_tokens=self.num_tokens,
        ).to(self.device, dtype=torch.float32)
        return image_proj_model

    def set_ip_adapter(self):
        unet = self.pipe.unet
        attn_procs = {}
        for name in unet.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = unet.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = unet.config.block_out_channels[block_id]
            if cross_attention_dim is None:
                attn_procs[name] = AttnProcessor().to(self.device)
            else:
                attn_procs[name] = IPAttnProcessor(
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    scale=1.0,
                    num_tokens=self.num_tokens,
                ).to(self.device, dtype=torch.float32)
        unet.set_attn_processor(attn_procs)
                
    def get_alpha_clip_embeds(self, pil_image, alpha):
        clip_image = [self.alpha_clip_image_processor(image) for image in pil_image]
        clip_image = torch.stack(clip_image).to(self.device, dtype=torch.float32)
        masks = [self.mask_transform(mask) for mask in alpha]
        masks = torch.stack(masks).to(self.device, dtype=torch.float32)
        
        return self.image_encoder(clip_image, masks)

    def load_ip_adapter(self):
        if os.path.splitext(self.ipadapter_ckpt)[-1] == ".safetensors":
            state_dict = {"image_proj": {}, "ip_adapter": {}}
            with safe_open(self.ipadapter_ckpt, framework="pt", device="cpu") as f:
                for key in f.keys():
                    if key.startswith("image_proj."):
                        state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
                    elif key.startswith("ip_adapter."):
                        state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
        else:
            state_dict = torch.load(self.ipadapter_ckpt, map_location="cpu")
        self.image_proj_model.load_state_dict(state_dict["image_proj"])
        ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
        ip_layers.load_state_dict(state_dict["ip_adapter"])
        
    def get_complement_of_mask(self, mask):
        return Image.fromarray((255 - np.array(mask[0])).astype(np.uint8))
    
    def clipaway_projection_block(self, bg_embeds, fg_embeds):
        projected_vector_magnitude = bg_embeds[0].dot(fg_embeds[0]) / fg_embeds[0].norm()
        projected_vector = projected_vector_magnitude * fg_embeds / fg_embeds.norm()
        return bg_embeds - projected_vector
    
    def get_focused_embeddings(self, pil_image, alpha, use_projection_block=False):
        # get focused alpha clip embeds
        clip_image_embeds_fg = self.get_alpha_clip_embeds(pil_image, alpha) 
        clip_image_embeds_bg = self.get_alpha_clip_embeds(pil_image, [self.get_complement_of_mask(alpha)])
        
        # mlp projection
        projected_alpha_clip_embeds_fg = self.mlp_projection_layer(clip_image_embeds_fg)
        projected_alpha_clip_embeds_bg = self.mlp_projection_layer(clip_image_embeds_bg)
            
        # ip adapter logic
        image_prompt_embeds_fg = self.image_proj_model(projected_alpha_clip_embeds_fg)
        image_prompt_embeds_bg = self.image_proj_model(projected_alpha_clip_embeds_bg)
        uncond_image_prompt_embeds = self.image_proj_model(self.mlp_projection_layer(torch.zeros_like(clip_image_embeds_fg)))
                
        if use_projection_block:
            # clipaway projection block
            projected_alpha_clip_embeds = self.clipaway_projection_block(projected_alpha_clip_embeds_bg, projected_alpha_clip_embeds_fg)
            image_prompt_embeds = self.image_proj_model(projected_alpha_clip_embeds)
            return image_prompt_embeds, image_prompt_embeds_fg, image_prompt_embeds_bg, uncond_image_prompt_embeds
        
        return image_prompt_embeds_fg, image_prompt_embeds_bg, uncond_image_prompt_embeds
        
        
    def get_ipadapter_embeds(self, pil_image=None, alpha=None):
        # get focused alpha clip embeds
        clip_image_embeds_fg = self.get_alpha_clip_embeds(pil_image, alpha) 
        clip_image_embeds_bg = self.get_alpha_clip_embeds(pil_image, [self.get_complement_of_mask(alpha)])
        
        # mlp projection
        projected_alpha_clip_embeds_fg = self.mlp_projection_layer(clip_image_embeds_fg)
        projected_alpha_clip_embeds_bg = self.mlp_projection_layer(clip_image_embeds_bg)
        
        # clipaway projection block
        projected_alpha_clip_embeds = self.clipaway_projection_block(projected_alpha_clip_embeds_bg, projected_alpha_clip_embeds_fg)
        
        # ip adapter logic
        image_prompt_embeds = self.image_proj_model(projected_alpha_clip_embeds)
        uncond_image_prompt_embeds = self.image_proj_model(self.mlp_projection_layer(torch.zeros_like(clip_image_embeds_fg)))
                
        return image_prompt_embeds, uncond_image_prompt_embeds

    
    def set_scale(self, scale):
        for attn_processor in self.pipe.unet.attn_processors.values():
            if isinstance(attn_processor, IPAttnProcessor):
                attn_processor.scale = scale

    @torch.inference_mode()
    def generate(
        self,
        pil_image=None,
        alpha=None, 
        prompt=None,
        negative_prompt=None,
        image_prompt_embeds=None,
        uncond_image_prompt_embeds=None,
        scale=1.0,
        num_samples=1,
        seed=None,
        guidance_scale=7.5,
        num_inference_steps=50,
        **kwargs,
    ):
        self.set_scale(scale)
        num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)

        if prompt is None:
            prompt = "best quality, high quality"
        if negative_prompt is None:
            negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"

        if not isinstance(prompt, List):
            prompt = [prompt] * num_prompts
        if not isinstance(negative_prompt, List):
            negative_prompt = [negative_prompt] * num_prompts

        if image_prompt_embeds is None or uncond_image_prompt_embeds is None:
            image_prompt_embeds, uncond_image_prompt_embeds= self.get_ipadapter_embeds(pil_image=pil_image, alpha=alpha)
        else:
            image_prompt_embeds = image_prompt_embeds.to(self.device)
            uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device)
            
        bs_embed, seq_len, _ = image_prompt_embeds.shape
        image_prompt_embeds = image_prompt_embeds.view(bs_embed, seq_len, -1)
        uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed, seq_len, -1)

        with torch.inference_mode():
            prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
                prompt,
                device=self.device,
                num_images_per_prompt=num_samples,
                do_classifier_free_guidance=True,
                negative_prompt=negative_prompt,
            )
            prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
            negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)

        generator = get_generator(seed, self.device)

        images = self.pipe(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=generator,
            image=pil_image, 
            mask_image=alpha,
            **kwargs,
        ).images

        return images