absynth-2.0 / app.py
benjamin-paine's picture
Update app.py
0a55839 verified
import gradio as gr
import numpy as np
import random
import gc
import json
import torch
import spaces
from huggingface_hub import hf_hub_download
from diffusers import (
AutoencoderKL,
SD3Transformer2DModel,
StableDiffusion3Pipeline,
FlowMatchEulerDiscreteScheduler
)
from diffusers.loaders.single_file_utils import (
convert_sd3_transformer_checkpoint_to_diffusers,
)
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
T5Tokenizer
)
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from safetensors import safe_open
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
finetune_repo_id = "DoctorDiffusion/Absynth-2.0"
finetune_filename = "Absynth_SD3.5L_2.0.safetensors"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
# Initialize transformer
config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json")
with open(config_file, "r") as fp:
config = json.load(fp)
with init_empty_weights():
transformer = SD3Transformer2DModel.from_config(config)
# Get transformer state dict and load
model_file = hf_hub_download(repo_id=finetune_repo_id, filename=finetune_filename)
state_dict = {}
with safe_open(model_file, framework="pt") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict)
for key, value in state_dict.items():
set_module_tensor_to_device(
transformer,
key,
device,
value=value,
dtype=torch_dtype
)
# Try to keep memory usage down
del state_dict
gc.collect()
# Initialize models from base SD3.5
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder")
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2")
text_encoder_3 = T5EncoderModel.from_pretrained(model_repo_id, subfolder="text_encoder_3")
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2")
tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler")
# Create pipeline from our models
pipe = StableDiffusion3Pipeline(
vae=vae,
scheduler=scheduler,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
text_encoder_3=text_encoder_3,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
tokenizer_3=tokenizer_3,
transformer=transformer
)
pipe = pipe.to(device, dtype=torch_dtype)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1536
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=4.5,
num_inference_steps=40,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"An astrounaut encounters an alien on the moon, photograph",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [Absynth 2.0](https://huggingface.co/DoctorDiffusion/Absynth-2.0) by [DoctorDiffusion](https://civitai.com/user/doctor_diffusion)")
gr.Markdown("Finetuned from [Stable Diffusion 3.5 Large (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large) by [Stability AI](https://stability.ai/news/introducing-stable-diffusion-3-5).")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1344,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=40,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()