use transform
Browse files
app.py
CHANGED
@@ -1,64 +1,54 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
3 |
import base64
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
-
def encode_image(
|
8 |
-
|
9 |
-
|
|
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
max_tokens,
|
17 |
-
temperature,
|
18 |
-
top_p,
|
19 |
-
):
|
20 |
-
messages = [{"role": "system", "content": system_message}]
|
21 |
-
for user_msg, bot_msg in history:
|
22 |
-
messages.append({"role": "user", "content": user_msg})
|
23 |
-
messages.append({"role": "assistant", "content": bot_msg})
|
24 |
-
|
25 |
-
if image:
|
26 |
-
base64_image = encode_image(image)
|
27 |
-
image_message = f"<image>{base64_image}</image>"
|
28 |
-
message = image_message + "\n" + message
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
demo = gr.Interface(
|
45 |
-
|
46 |
inputs=[
|
47 |
-
gr.
|
48 |
-
gr.
|
49 |
-
gr.State([]), # for history
|
50 |
-
gr.Textbox(value="You are a friendly AI assistant capable of understanding images and text.", label="System message"),
|
51 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
53 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
54 |
],
|
55 |
-
outputs=
|
56 |
-
|
57 |
-
|
58 |
-
],
|
59 |
-
title="MiniCPM-Llama3-V-2_5 Image and Text Chat",
|
60 |
-
description="Upload an image and ask questions about it, or just chat without an image.",
|
61 |
-
allow_flagging="never"
|
62 |
)
|
63 |
|
64 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
import base64
|
6 |
+
from io import BytesIO
|
7 |
|
8 |
+
# 加载模型和分词器
|
9 |
+
model_name = "openbmb/MiniCPM-Llama3-V-2_5-int4"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
12 |
|
13 |
+
def encode_image(image):
|
14 |
+
buffered = BytesIO()
|
15 |
+
image.save(buffered, format="PNG")
|
16 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
17 |
|
18 |
+
def generate_text(prompt, max_length=100):
|
19 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
20 |
+
with torch.no_grad():
|
21 |
+
outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1)
|
22 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
def predict(image, prompt):
|
25 |
+
if image is not None:
|
26 |
+
# 确保image是PIL Image对象
|
27 |
+
if isinstance(image, str):
|
28 |
+
image = Image.open(image)
|
29 |
+
|
30 |
+
# 编码图像
|
31 |
+
encoded_image = encode_image(image)
|
32 |
+
|
33 |
+
# 准备输入
|
34 |
+
full_prompt = f"<image>{encoded_image}</image>\n{prompt if prompt else 'Describe this image.'}"
|
35 |
+
|
36 |
+
# 生成文本
|
37 |
+
result = generate_text(full_prompt)
|
38 |
+
|
39 |
+
return f"Model response: {result}\n\nUser prompt: {prompt}"
|
40 |
+
else:
|
41 |
+
return "No image uploaded. " + (f"You asked: {prompt}" if prompt else "Please upload an image and optionally provide a prompt.")
|
42 |
|
43 |
demo = gr.Interface(
|
44 |
+
predict,
|
45 |
inputs=[
|
46 |
+
gr.Image(type="pil", label="Upload Image"),
|
47 |
+
gr.Textbox(label="Prompt (optional)")
|
|
|
|
|
|
|
|
|
|
|
48 |
],
|
49 |
+
outputs=gr.Textbox(label="Result"),
|
50 |
+
title="Image Analysis with MiniCPM-Llama3-V-2_5-int4",
|
51 |
+
description="Upload an image and optionally provide a prompt for analysis."
|
|
|
|
|
|
|
|
|
52 |
)
|
53 |
|
54 |
if __name__ == "__main__":
|