implementation is added
Browse files- mrr.py +48 -45
- requirements.txt +2 -1
- tests.py +0 -17
mrr.py
CHANGED
@@ -11,58 +11,59 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
"""
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
-
# TODO: Add BibTeX citation
|
21 |
_CITATION = """\
|
22 |
-
@
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
-
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
This
|
|
|
32 |
"""
|
33 |
|
34 |
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
Calculates how good are predictions given some references, using certain scores
|
38 |
Args:
|
39 |
-
predictions:
|
40 |
-
|
41 |
-
references: list of
|
42 |
-
|
|
|
43 |
Returns:
|
44 |
-
|
45 |
-
another_score: description of the second score,
|
46 |
Examples:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
>>>
|
|
|
|
|
52 |
>>> print(results)
|
53 |
-
{'
|
54 |
"""
|
55 |
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
-
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
-
class
|
62 |
-
"""TODO: Short description of my evaluation module."""
|
63 |
-
|
64 |
def _info(self):
|
65 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
66 |
return evaluate.MetricInfo(
|
67 |
# This is the description that will appear on the modules page.
|
68 |
module_type="metric",
|
@@ -71,25 +72,27 @@ class mrr(evaluate.Metric):
|
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
features=datasets.Features({
|
74 |
-
'predictions':
|
75 |
-
'references':
|
|
|
76 |
}),
|
77 |
# Homepage of the module for documentation
|
78 |
-
|
79 |
-
# Additional links to the codebase or references
|
80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
)
|
83 |
|
84 |
-
def
|
85 |
-
"""Optional: download external resources useful to compute the scores"""
|
86 |
-
# TODO: Download external resources if needed
|
87 |
-
pass
|
88 |
-
|
89 |
-
def _compute(self, predictions, references):
|
90 |
"""Returns the scores"""
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return {
|
94 |
-
"
|
95 |
}
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
"""Mean average precision metric"""
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
+
import json
|
19 |
+
from ranx import Qrels, Run
|
20 |
+
from ranx import evaluate as ran_evaluate
|
21 |
|
22 |
|
|
|
23 |
_CITATION = """\
|
24 |
+
@inproceedings{ranx,
|
25 |
+
author = {Elias Bassani},
|
26 |
+
title = {ranx: {A} Blazing-Fast Python Library for Ranking Evaluation and Comparison},
|
27 |
+
booktitle = {{ECIR} {(2)}},
|
28 |
+
series = {Lecture Notes in Computer Science},
|
29 |
+
volume = {13186},
|
30 |
+
pages = {259--264},
|
31 |
+
publisher = {Springer},
|
32 |
+
year = {2022},
|
33 |
+
doi = {10.1007/978-3-030-99739-7\_30}
|
34 |
}
|
35 |
"""
|
36 |
|
|
|
37 |
_DESCRIPTION = """\
|
38 |
+
This is the mean reciprocal rank (mrr) metric for retrieval systems.
|
39 |
+
It is the multiplicative inverse of the rank of the first retrieved relevant document: 1 for first place, 1/2 for second place, 1/3 for third place, and so on. You can refer to [here](https://amenra.github.io/ranx/metrics/#mean-reciprocal-rank)
|
40 |
"""
|
41 |
|
42 |
|
|
|
43 |
_KWARGS_DESCRIPTION = """
|
|
|
44 |
Args:
|
45 |
+
predictions: dictionary of dictionaries where each dictionary consists of document relevancy scores produced by the model for a given query
|
46 |
+
One dictionary per query.
|
47 |
+
references: List of list of strings where each lists consists of the relevant document names for a given query in a sorted relevancy order.
|
48 |
+
The outer list is sorted from query one to n.
|
49 |
+
k: `int`, optional, default is None, it is to calculate mrr@k
|
50 |
Returns:
|
51 |
+
mrr (`float`): mean reciprocal rank. Minimum possible value is 0. Maximum possible value is 1.0
|
|
|
52 |
Examples:
|
53 |
+
|
54 |
+
>>> my_new_module = evaluate.load("mrr")
|
55 |
+
>>> references= [json.dumps({"q_1":{"d_1":1, "d_2":2} }),
|
56 |
+
json.dumps({"q_2":{"d_2":1, "d_3":2, "d_5":3}})]
|
57 |
+
>>> predictions = [json.dumps({"q_1": { "d_1": 0.8, "d_2": 0.9}}),
|
58 |
+
json.dumps({"q_2": {"d_2": 0.9, "d_1": 0.8, "d_5": 0.7, "d_3": 0.3}})]
|
59 |
+
>>> results = my_new_module.compute(references=references, predictions=predictions)
|
60 |
>>> print(results)
|
61 |
+
{'recall': 1.0}
|
62 |
"""
|
63 |
|
|
|
|
|
|
|
|
|
64 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
65 |
+
class map(evaluate.Metric):
|
|
|
|
|
66 |
def _info(self):
|
|
|
67 |
return evaluate.MetricInfo(
|
68 |
# This is the description that will appear on the modules page.
|
69 |
module_type="metric",
|
|
|
72 |
inputs_description=_KWARGS_DESCRIPTION,
|
73 |
# This defines the format of each prediction and reference
|
74 |
features=datasets.Features({
|
75 |
+
'predictions': datasets.Value("string"),
|
76 |
+
'references': datasets.Value("string"),
|
77 |
+
'k': datasets.Value("int", default=None)
|
78 |
}),
|
79 |
# Homepage of the module for documentation
|
80 |
+
reference_urls=["https://amenra.github.io/ranx/"]
|
|
|
|
|
|
|
81 |
)
|
82 |
|
83 |
+
def _compute(self, predictions, references, k=None):
|
|
|
|
|
|
|
|
|
|
|
84 |
"""Returns the scores"""
|
85 |
+
preds = {}
|
86 |
+
refs = {}
|
87 |
+
for pred in predictions:
|
88 |
+
preds = preds | json.loads(pred)
|
89 |
+
for ref in references:
|
90 |
+
refs = refs | json.loads(ref)
|
91 |
+
|
92 |
+
run = Run(preds)
|
93 |
+
qrels = Qrels(refs)
|
94 |
+
metric = "mrr" if k is None else f"mrr@{k}"
|
95 |
+
mrr_score = ran_evaluate(qrels, run, metric)
|
96 |
return {
|
97 |
+
"mrr": mrr_score,
|
98 |
}
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
git+https://github.com/huggingface/evaluate@main
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
ranx==0.3.19
|
tests.py
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
test_cases = [
|
2 |
-
{
|
3 |
-
"predictions": [0, 0],
|
4 |
-
"references": [1, 1],
|
5 |
-
"result": {"metric_score": 0}
|
6 |
-
},
|
7 |
-
{
|
8 |
-
"predictions": [1, 1],
|
9 |
-
"references": [1, 1],
|
10 |
-
"result": {"metric_score": 1}
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"predictions": [1, 0],
|
14 |
-
"references": [1, 1],
|
15 |
-
"result": {"metric_score": 0.5}
|
16 |
-
}
|
17 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|