|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") |
|
|
|
def zeroShotClassification(text_input, candidate_labels): |
|
labels = [label.strip(' ') for label in candidate_labels.split(',')] |
|
output = {} |
|
prediction = classifier(text_input, labels) |
|
for i in range(len(prediction['labels'])): |
|
output[prediction['labels'][i]] = prediction['scores'][i] |
|
return output |
|
|
|
examples = [["One day I will see the world", "travel, live, die, future"]] |
|
|
|
demo = gr.Interface(fn=zeroShotClassification, inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Candidate Labels")], outputs=gr.Label(label="Classification"), examples=examples) |
|
demo.launch() |