datasciencedojo's picture
Upload 2 files
4e3dfa8
raw
history blame
724 Bytes
import gradio as gr
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
def zeroShotClassification(text_input, candidate_labels):
labels = [label.strip(' ') for label in candidate_labels.split(',')]
output = {}
prediction = classifier(text_input, labels)
for i in range(len(prediction['labels'])):
output[prediction['labels'][i]] = prediction['scores'][i]
return output
examples = [["One day I will see the world", "travel, live, die, future"]]
demo = gr.Interface(fn=zeroShotClassification, inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Candidate Labels")], outputs=gr.Label(label="Classification"), examples=examples)
demo.launch()