File size: 57,174 Bytes
c7b113a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import html
import inspect
import re
import urllib.parse as ul
from typing import Callable, List, Optional, Tuple, Union

import torch
from transformers import T5EncoderModel, T5Tokenizer

from diffusers.image_processor import PixArtImageProcessor, PipelineImageInput
from diffusers.models import AutoencoderKL, PixArtTransformer2DModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    BACKENDS_MAPPING,
    deprecate,
    is_bs4_available,
    is_ftfy_available,
    logging,
    replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import (
    ASPECT_RATIO_256_BIN,
    ASPECT_RATIO_512_BIN,
    ASPECT_RATIO_1024_BIN,
)


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
    encoder_output: torch.Tensor,
    generator: Optional[torch.Generator] = None,
    sample_mode: str = "sample",
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

if is_bs4_available():
    from bs4 import BeautifulSoup

if is_ftfy_available():
    import ftfy

def debug_print(message: str):
    #print(message)
    pass

ASPECT_RATIO_2048_BIN = {
    "0.25": [1024.0, 4096.0],
    "0.26": [1024.0, 3968.0],
    "0.27": [1024.0, 3840.0],
    "0.28": [1024.0, 3712.0],
    "0.32": [1152.0, 3584.0],
    "0.33": [1152.0, 3456.0],
    "0.35": [1152.0, 3328.0],
    "0.4": [1280.0, 3200.0],
    "0.42": [1280.0, 3072.0],
    "0.48": [1408.0, 2944.0],
    "0.5": [1408.0, 2816.0],
    "0.52": [1408.0, 2688.0],
    "0.57": [1536.0, 2688.0],
    "0.6": [1536.0, 2560.0],
    "0.68": [1664.0, 2432.0],
    "0.72": [1664.0, 2304.0],
    "0.78": [1792.0, 2304.0],
    "0.82": [1792.0, 2176.0],
    "0.88": [1920.0, 2176.0],
    "0.94": [1920.0, 2048.0],
    "1.0": [2048.0, 2048.0],
    "1.07": [2048.0, 1920.0],
    "1.13": [2176.0, 1920.0],
    "1.21": [2176.0, 1792.0],
    "1.29": [2304.0, 1792.0],
    "1.38": [2304.0, 1664.0],
    "1.46": [2432.0, 1664.0],
    "1.67": [2560.0, 1536.0],
    "1.75": [2688.0, 1536.0],
    "2.0": [2816.0, 1408.0],
    "2.09": [2944.0, 1408.0],
    "2.4": [3072.0, 1280.0],
    "2.5": [3200.0, 1280.0],
    "2.89": [3328.0, 1152.0],
    "3.0": [3456.0, 1152.0],
    "3.11": [3584.0, 1152.0],
    "3.62": [3712.0, 1024.0],
    "3.75": [3840.0, 1024.0],
    "3.88": [3968.0, 1024.0],
    "4.0": [4096.0, 1024.0],
}


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import PixArtSigmaPipeline

        >>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too.
        >>> pipe = PixArtSigmaPipeline.from_pretrained(
        ...     "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16
        ... )
        >>> # Enable memory optimizations.
        >>> # pipe.enable_model_cpu_offload()

        >>> prompt = "A small cactus with a happy face in the Sahara desert."
        >>> image = pipe(prompt).images[0]
        ```
"""


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError(
            "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
        )
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class PixArtSigmaPipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-image generation using PixArt-Sigma.
    """

    bad_punct_regex = re.compile(
        r"["
        + "#®•©™&@·º½¾¿¡§~"
        + r"\)"
        + r"\("
        + r"\]"
        + r"\["
        + r"\}"
        + r"\{"
        + r"\|"
        + "\\"
        + r"\/"
        + r"\*"
        + r"]{1,}"
    )  # noqa

    _optional_components = ["tokenizer", "text_encoder"]
    model_cpu_offload_seq = "text_encoder->transformer->vae"

    def __init__(
        self,
        tokenizer: T5Tokenizer,
        text_encoder: T5EncoderModel,
        vae: AutoencoderKL,
        transformer: PixArtTransformer2DModel,
        scheduler: KarrasDiffusionSchedulers,
    ):
        super().__init__()

        self.register_modules(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            vae=vae,
            transformer=transformer,
            scheduler=scheduler,
        )

        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = PixArtImageProcessor(
            vae_scale_factor=self.vae_scale_factor
        )

    def get_timesteps(
        self, num_inference_steps, strength, device, denoising_start=None
    ):
        # get the original timestep using init_timestep
        if denoising_start is None and strength is not None:
            init_timestep = min(
                int(num_inference_steps * strength), num_inference_steps
            )
            debug_print(f"Init timestep: {init_timestep}")
            t_start = max(num_inference_steps - init_timestep, 0)
            debug_print(
                f"t_start = max({num_inference_steps} - {init_timestep}, 0) = {t_start}"
            )
        else:
            debug_print(f"denoising_start: {denoising_start}")
            t_start = 0

        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
        # Strength is irrelevant if we directly request a timestep to start at;
        # that is, strength is determined by the denoising_start instead.
        if denoising_start is not None:
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (denoising_start * self.scheduler.config.num_train_timesteps)
                )
            )

            num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
            if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
                # if the scheduler is a 2nd order scheduler we might have to do +1
                # because `num_inference_steps` might be even given that every timestep
                # (except the highest one) is duplicated. If `num_inference_steps` is even it would
                # mean that we cut the timesteps in the middle of the denoising step
                # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
                # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
                num_inference_steps = num_inference_steps + 1

            # because t_n+1 >= t_n, we slice the timesteps starting from the end
            timesteps = timesteps[-num_inference_steps:]
            return timesteps, num_inference_steps

        return timesteps, num_inference_steps - t_start

    # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.encode_prompt with 120->300
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        do_classifier_free_guidance: bool = True,
        negative_prompt: str = "",
        num_images_per_prompt: int = 1,
        device: Optional[torch.device] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        prompt_attention_mask: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
        clean_caption: bool = False,
        max_sequence_length: int = 300,
        **kwargs,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
                instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
                PixArt-Alpha, this should be "".
            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
                whether to use classifier free guidance or not
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                number of images that should be generated per prompt
            device: (`torch.device`, *optional*):
                torch device to place the resulting embeddings on
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
                string.
            clean_caption (`bool`, defaults to `False`):
                If `True`, the function will preprocess and clean the provided caption before encoding.
            max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
        """

        if "mask_feature" in kwargs:
            deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
            deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)

        if device is None:
            device = self._execution_device

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # See Section 3.1. of the paper.
        max_length = max_sequence_length

        if prompt_embeds is None:
            prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(
                prompt, padding="longest", return_tensors="pt"
            ).input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[
                -1
            ] and not torch.equal(text_input_ids, untruncated_ids):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because T5 can only handle sequences up to"
                    f" {max_length} tokens: {removed_text}"
                )

            prompt_attention_mask = text_inputs.attention_mask
            prompt_attention_mask = prompt_attention_mask.to(device)

            prompt_embeds = self.text_encoder(
                text_input_ids.to(device), attention_mask=prompt_attention_mask
            )
            prompt_embeds = prompt_embeds[0]

        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        elif self.transformer is not None:
            dtype = self.transformer.dtype
        else:
            dtype = None

        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(
            bs_embed * num_images_per_prompt, seq_len, -1
        )
        prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
        prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens = (
                [negative_prompt] * batch_size
                if isinstance(negative_prompt, str)
                else negative_prompt
            )
            uncond_tokens = self._text_preprocessing(
                uncond_tokens, clean_caption=clean_caption
            )
            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_attention_mask=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            negative_prompt_attention_mask = uncond_input.attention_mask
            negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=negative_prompt_attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(
                dtype=dtype, device=device
            )

            negative_prompt_embeds = negative_prompt_embeds.repeat(
                1, num_images_per_prompt, 1
            )
            negative_prompt_embeds = negative_prompt_embeds.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )

            negative_prompt_attention_mask = negative_prompt_attention_mask.view(
                bs_embed, -1
            )
            negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
                num_images_per_prompt, 1
            )
        else:
            negative_prompt_embeds = None
            negative_prompt_attention_mask = None

        return (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.check_inputs
    def check_inputs(
        self,
        prompt,
        height,
        width,
        strength,
        num_inference_steps,
        negative_prompt,
        callback_steps,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        prompt_attention_mask=None,
        negative_prompt_attention_mask=None,
    ):
        if strength is None:
            if height % 8 != 0 or width % 8 != 0:
                raise ValueError(
                    f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
                )
        else:
            if strength < 0 or strength > 1:
                raise ValueError(
                    f"The value of strength should in [0.0, 1.0] but is {strength}"
                )
            if num_inference_steps is None:
                raise ValueError("`num_inference_steps` cannot be None.")
            elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
                raise ValueError(
                    f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
                    f" {type(num_inference_steps)}."
                )
        if (callback_steps is None) or (
            callback_steps is not None
            and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            prompt = None

        if prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (
            not isinstance(prompt, str) and not isinstance(prompt, list)
        ):
            raise ValueError(
                f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
            )

        if prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt is not None and negative_prompt_embeds is not None:
            negative_prompt = None

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError(
                "Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
            )

        if (
            negative_prompt_embeds is not None
            and negative_prompt_attention_mask is None
        ):
            raise ValueError(
                "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
            if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
                raise ValueError(
                    "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
                    f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
                    f" {negative_prompt_attention_mask.shape}."
                )

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
    def _text_preprocessing(self, text, clean_caption=False):
        if clean_caption and not is_bs4_available():
            logger.warning(
                BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")
            )
            logger.warning("Setting `clean_caption` to False...")
            clean_caption = False

        if clean_caption and not is_ftfy_available():
            logger.warning(
                BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")
            )
            logger.warning("Setting `clean_caption` to False...")
            clean_caption = False

        if not isinstance(text, (tuple, list)):
            text = [text]

        def process(text: str):
            if clean_caption:
                text = self._clean_caption(text)
                text = self._clean_caption(text)
            else:
                text = text.lower().strip()
            return text

        return [process(t) for t in text]

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
    def _clean_caption(self, caption):
        caption = str(caption)
        caption = ul.unquote_plus(caption)
        caption = caption.strip().lower()
        caption = re.sub("<person>", "person", caption)
        # urls:
        caption = re.sub(
            r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        caption = re.sub(
            r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        # html:
        caption = BeautifulSoup(caption, features="html.parser").text

        # @<nickname>
        caption = re.sub(r"@[\w\d]+\b", "", caption)

        # 31C0—31EF CJK Strokes
        # 31F0—31FF Katakana Phonetic Extensions
        # 3200—32FF Enclosed CJK Letters and Months
        # 3300—33FF CJK Compatibility
        # 3400—4DBF CJK Unified Ideographs Extension A
        # 4DC0—4DFF Yijing Hexagram Symbols
        # 4E00—9FFF CJK Unified Ideographs
        caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
        caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
        caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
        caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
        caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
        caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
        caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
        #######################################################

        # все виды тире / all types of dash --> "-"
        caption = re.sub(
            r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",  # noqa
            "-",
            caption,
        )

        # кавычки к одному стандарту
        caption = re.sub(r"[`´«»“”¨]", '"', caption)
        caption = re.sub(r"[‘’]", "'", caption)

        # &quot;
        caption = re.sub(r"&quot;?", "", caption)
        # &amp
        caption = re.sub(r"&amp", "", caption)

        # ip adresses:
        caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)

        # article ids:
        caption = re.sub(r"\d:\d\d\s+$", "", caption)

        # \n
        caption = re.sub(r"\\n", " ", caption)

        # "#123"
        caption = re.sub(r"#\d{1,3}\b", "", caption)
        # "#12345.."
        caption = re.sub(r"#\d{5,}\b", "", caption)
        # "123456.."
        caption = re.sub(r"\b\d{6,}\b", "", caption)
        # filenames:
        caption = re.sub(
            r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption
        )

        #
        caption = re.sub(r"[\"\']{2,}", r'"', caption)  # """AUSVERKAUFT"""
        caption = re.sub(r"[\.]{2,}", r" ", caption)  # """AUSVERKAUFT"""

        caption = re.sub(
            self.bad_punct_regex, r" ", caption
        )  # ***AUSVERKAUFT***, #AUSVERKAUFT
        caption = re.sub(r"\s+\.\s+", r" ", caption)  # " . "

        # this-is-my-cute-cat / this_is_my_cute_cat
        regex2 = re.compile(r"(?:\-|\_)")
        if len(re.findall(regex2, caption)) > 3:
            caption = re.sub(regex2, " ", caption)

        caption = ftfy.fix_text(caption)
        caption = html.unescape(html.unescape(caption))

        caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption)  # jc6640
        caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption)  # jc6640vc
        caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption)  # 6640vc231

        caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
        caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
        caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
        caption = re.sub(
            r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption
        )
        caption = re.sub(r"\bpage\s+\d+\b", "", caption)

        caption = re.sub(
            r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption
        )  # j2d1a2a...

        caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)

        caption = re.sub(r"\b\s+\:\s+", r": ", caption)
        caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
        caption = re.sub(r"\s+", " ", caption)

        caption.strip()

        caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
        caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
        caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
        caption = re.sub(r"^\.\S+$", "", caption)

        return caption.strip()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        _latents=None,
        timestep=None,
        add_noise=False,
        image=None,
    ):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if _latents is not None:
            init_latents = _latents.to(device)
        elif image is None and _latents is None:
            debug_print("Make random latents tensor")
            init_latents = randn_tensor(
                shape, generator=generator, device=device, dtype=dtype
            )

        latents_mean = latents_std = None
        if (
            hasattr(self.vae.config, "latents_mean")
            and self.vae.config.latents_mean is not None
        ):
            latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
        if (
            hasattr(self.vae.config, "latents_std")
            and self.vae.config.latents_std is not None
        ):
            latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
        if image is not None and hasattr(image, "shape") and image.shape[1] == 4:
            debug_print("Received valid latent image input.")
            init_latents = image

        if init_latents is not None:
            # scale the initial noise by the standard deviation required by the scheduler
            debug_print(f"Scaling the initial noise by the std required by the scheduler.")
            init_latents = init_latents * self.scheduler.init_noise_sigma

        if image is not None and image.shape[1] < 4:
            debug_print("Received RGB or similar image. Processing..")
            # make sure the VAE is in float32 mode, as it overflows in float16
            if self.vae.config.force_upcast:
                image = image.float()
                self.vae.to(dtype=torch.float32)

            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            elif isinstance(generator, list):
                init_latents = [
                    retrieve_latents(
                        self.vae.encode(image[i : i + 1]), generator=generator[i]
                    )
                    for i in range(batch_size)
                ]
                init_latents = torch.cat(init_latents, dim=0)
            else:
                debug_print("Encode image to latents.")
                init_latents = retrieve_latents(
                    self.vae.encode(image), generator=generator
                )

            if self.vae.config.force_upcast:
                self.vae.to(dtype)

            debug_print("Set initial latents..")
            init_latents = init_latents.to(dtype)
            if latents_mean is not None and latents_std is not None:
                debug_print("Scaling latents by mean/std")
                latents_mean = latents_mean.to(device=device, dtype=dtype)
                latents_std = latents_std.to(device=device, dtype=dtype)
                init_latents = (
                    (init_latents - latents_mean)
                    * self.vae.config.scaling_factor
                    / latents_std
                )
            else:
                debug_print("Scaling latents only by scaling_factor")
                init_latents = self.vae.config.scaling_factor * init_latents

            if (
                batch_size > init_latents.shape[0]
                and batch_size % init_latents.shape[0] == 0
            ):
                # expand init_latents for batch_size
                additional_image_per_prompt = batch_size // init_latents.shape[0]
                init_latents = torch.cat(
                    [init_latents] * additional_image_per_prompt, dim=0
                )
            elif (
                batch_size > init_latents.shape[0]
                and batch_size % init_latents.shape[0] != 0
            ):
                raise ValueError(
                    f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
                )
            else:
                init_latents = torch.cat([init_latents], dim=0)

        if (
            add_noise
            and timestep is not None
            and (_latents is not None or image is not None)
        ):
            shape = init_latents.shape
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            # get latents
            debug_print(f"Adding noise to tensor for timestep: {timestep}")
            init_latents = self.scheduler.add_noise(init_latents, noise, timestep)

        return init_latents

    @property
    def denoising_start(self):
        return self._denoising_start

    @property
    def denoising_end(self):
        return self._denoising_end

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        negative_prompt: str = "",
        strength: float = None,
        num_inference_steps: int = 20,
        timesteps: List[int] = None,
        sigmas: List[float] = None,
        denoising_start: Optional[float] = None,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 4.5,
        num_images_per_prompt: Optional[int] = 1,
        height: Optional[int] = None,
        width: Optional[int] = None,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        image: Optional[PipelineImageInput] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        prompt_attention_mask: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
        callback_steps: int = 1,
        clean_caption: bool = True,
        use_resolution_binning: bool = True,
        max_sequence_length: int = 300,
        **kwargs,
    ) -> Union[ImagePipelineOutput, Tuple]:
        """
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            strength (`float`, *optional*, defaults to 0.3):
                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
                will be used as a starting point, adding more noise to it the larger the `strength`. The number of
                denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
                be maximum and the denoising process will run for the full number of iterations specified in
                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of
                `denoising_start` being declared as an integer, the value of `strength` will be ignored.
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            denoising_start (`float`, *optional*):
                When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
                bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
                it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
                strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
                is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
                Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
            denoising_end (`float`, *optional*):
                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
                completed before it is intentionally prematurely terminated. As a result, the returned sample will
                still retain a substantial amount of noise as determined by the discrete timesteps selected by the
                scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
                "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            guidance_scale (`float`, *optional*, defaults to 4.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            height (`int`, *optional*, defaults to self.unet.config.sample_size):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size):
                The width in pixels of the generated image.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
                provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
            negative_prompt_attention_mask (`torch.Tensor`, *optional*):
                Pre-generated attention mask for negative text embeddings.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            clean_caption (`bool`, *optional*, defaults to `True`):
                Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
                be installed. If the dependencies are not installed, the embeddings will be created from the raw
                prompt.
            use_resolution_binning (`bool` defaults to `True`):
                If set to `True`, the requested height and width are first mapped to the closest resolutions using
                `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
                the requested resolution. Useful for generating non-square images.
            max_sequence_length (`int` defaults to 300): Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images
        """
        # 1. Check inputs. Raise error if not correct
        height = height or self.transformer.config.sample_size * self.vae_scale_factor
        width = width or self.transformer.config.sample_size * self.vae_scale_factor
        if use_resolution_binning:
            if self.transformer.config.sample_size == 256:
                aspect_ratio_bin = ASPECT_RATIO_2048_BIN
            elif self.transformer.config.sample_size == 128:
                aspect_ratio_bin = ASPECT_RATIO_1024_BIN
            elif self.transformer.config.sample_size == 64:
                aspect_ratio_bin = ASPECT_RATIO_512_BIN
            elif self.transformer.config.sample_size == 32:
                aspect_ratio_bin = ASPECT_RATIO_256_BIN
            else:
                raise ValueError("Invalid sample size")
            orig_height, orig_width = height, width
            height, width = self.image_processor.classify_height_width_bin(
                height, width, ratios=aspect_ratio_bin
            )

        self.check_inputs(
            prompt,
            height,
            width,
            strength,
            num_inference_steps,
            negative_prompt,
            callback_steps,
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        )

        # 2. Default height and width to transformer
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        self._denoising_start = denoising_start
        self._num_timesteps = num_inference_steps
        self._denoising_end = denoising_end

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt,
            do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            clean_caption=clean_caption,
            max_sequence_length=max_sequence_length,
        )
        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            prompt_attention_mask = torch.cat(
                [negative_prompt_attention_mask, prompt_attention_mask], dim=0
            )

        # 4. Prepare timesteps
        def denoising_value_valid(dnv):
            return isinstance(dnv, float) and 0 < dnv < 1

        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps, sigmas
        )

        # 5. Prepare latents.
        if image is not None:
            image = self.image_processor.preprocess(image)
            image = image.to(device=self.vae.device, dtype=self.vae.dtype)

        latent_channels = self.transformer.config.in_channels
        latent_timestep = None
        if (
            denoising_end is not None
            or denoising_start is not None
            or strength is not None
        ):
            timesteps, num_inference_steps = self.get_timesteps(
                num_inference_steps,
                strength,
                device,
                denoising_start=(
                    self.denoising_start
                    if denoising_value_valid(self.denoising_start)
                    else None
                ),
            )
            latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
            if latents is not None:
                height, width = latents.shape[-2:]
                height = height * self.vae_scale_factor
                width = width * self.vae_scale_factor
        add_noise = (
            True
            if (
                self.denoising_start is None
                and (image is not None or latents is not None)
            )
            else False
        )
        debug_print(f"Add_noise: {add_noise}")
        if latents is None:
            debug_print("Prepare latents..")
            latents = self.prepare_latents(
                batch_size * num_images_per_prompt,
                latent_channels,
                height,
                width,
                prompt_embeds.dtype,
                device,
                generator,
                latents,
                timestep=latent_timestep,
                add_noise=add_noise,
                image=image,
            )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 6.1 Prepare micro-conditions.
        added_cond_kwargs = {"resolution": None, "aspect_ratio": None}

        # 7. Denoising loop
        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
        )
        if (
            self.denoising_end is not None
            and self.denoising_start is not None
            and denoising_value_valid(self.denoising_end)
            and denoising_value_valid(self.denoising_start)
            and self.denoising_start >= self.denoising_end
        ):
            raise ValueError(
                f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
                + f" {self.denoising_end} when using type float."
            )
        if self.denoising_start is not None:
            if denoising_value_valid(self.denoising_start):
                discrete_timestep_cutoff = int(
                    round(
                        self.scheduler.config.num_train_timesteps
                        - (denoising_start * self.scheduler.config.num_train_timesteps)
                    )
                )

                num_inference_steps = (
                    (timesteps < discrete_timestep_cutoff).sum().item()
                )
                debug_print(
                    f"Beginning inference for stage2 with {num_inference_steps} steps."
                )

            else:
                raise ValueError(
                    f"`denoising_start` must be a float between 0 and 1: {denoising_start}"
                )
        if self.denoising_end is not None:
            if denoising_value_valid(self.denoising_end):
                discrete_timestep_cutoff = int(
                    round(
                        self.scheduler.config.num_train_timesteps
                        - (
                            self.denoising_end
                            * self.scheduler.config.num_train_timesteps
                        )
                    )
                )
                num_inference_steps = len(
                    list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
                )
                debug_print(
                    f"Beginning inference for stage1 with {num_inference_steps} steps."
                )
                timesteps = timesteps[:num_inference_steps]
            else:
                raise ValueError(
                    f"`denoising_end` must be a float between 0 and 1: {denoising_end}"
                )
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                latent_model_input = (
                    torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                )
                latent_model_input = self.scheduler.scale_model_input(
                    latent_model_input, t
                )

                current_timestep = t
                if not torch.is_tensor(current_timestep):
                    # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
                    # This would be a good case for the `match` statement (Python 3.10+)
                    is_mps = latent_model_input.device.type == "mps"
                    if isinstance(current_timestep, float):
                        dtype = torch.float32 if is_mps else torch.float64
                    else:
                        dtype = torch.int32 if is_mps else torch.int64
                    current_timestep = torch.tensor(
                        [current_timestep],
                        dtype=dtype,
                        device=latent_model_input.device,
                    )
                elif len(current_timestep.shape) == 0:
                    current_timestep = current_timestep[None].to(
                        latent_model_input.device
                    )
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                current_timestep = current_timestep.expand(latent_model_input.shape[0])

                # predict noise model_output
                noise_pred = self.transformer(
                    latent_model_input.to(
                        device=self.transformer.device, dtype=self.transformer.dtype
                    ),
                    encoder_hidden_states=prompt_embeds,
                    encoder_attention_mask=prompt_attention_mask,
                    timestep=current_timestep,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )

                # learned sigma
                if self.transformer.config.out_channels // 2 == latent_channels:
                    noise_pred = noise_pred.chunk(2, dim=1)[0]
                else:
                    noise_pred = noise_pred

                # compute previous image: x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs, return_dict=False
                )[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(
                latents.to(device=self.vae.device, dtype=self.vae.dtype)
                / self.vae.config.scaling_factor,
                return_dict=False,
            )[0]
            if use_resolution_binning:
                image = self.image_processor.resize_and_crop_tensor(
                    image, orig_width, orig_height
                )
        else:
            image = latents

        if not output_type == "latent":
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)