File size: 3,407 Bytes
25b84d5
1393f77
12d2706
9d65aa7
d5e5583
1393f77
12d2706
7338c67
de64520
 
 
 
 
 
 
 
 
 
7338c67
1393f77
26139de
38d6f1a
de64520
70187df
 
 
 
de64520
 
70187df
7338c67
1393f77
 
 
 
 
 
 
de64520
1393f77
7338c67
1393f77
 
de47ce6
 
de64520
1393f77
 
4064994
1393f77
12d2706
fd948c1
 
 
 
 
 
 
 
 
 
b3b8fd7
ecd948a
 
 
 
 
 
 
fd948c1
7338c67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import spaces
import torch
from diffusers import PixArtSigmaPipeline
import gradio as gr

# Load the pre-trained diffusion model
pipe = PixArtSigmaPipeline.from_pretrained('ptx0/pixart-900m-1024-ft', torch_dtype=torch.bfloat16)
pipe.to('cuda')
import re

def extract_resolution(resolution_str):
    match = re.match(r'(\d+)x(\d+)', resolution_str)
    if match:
        width = int(match.group(1))
        height = int(match.group(2))
        return (width, height)
    else:
        return None

# Define the image generation function with adjustable parameters and a progress bar
@spaces.GPU
def generate(prompt, guidance_scale, num_inference_steps, resolution, negative_prompt):
    width, height = extract_resolution(resolution) or (1024, 1024)
    return pipe(
        prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width, height=height
    ).images

# Example prompts to demonstrate the model's capabilities
example_prompts = [
    ["A futuristic cityscape at night under a starry sky", 7.5, 25, "blurry, overexposed"],
    ["A serene landscape with a flowing river and autumn trees", 8.0, 20, "crowded, noisy"],
    ["An abstract painting of joy and energy in bright colors", 9.0, 30, "dark, dull"]
]

# Create a Gradio interface, 1024x1024,1152x960,896x1152
iface = gr.Interface(
    fn=generate,
    inputs=[
        gr.Text(label="Enter your prompt"),
        gr.Slider(1, 20, step=0.1, label="Guidance Scale", value=3.4),
        gr.Slider(1, 50, step=1, label="Number of Inference Steps", value=28),
        gr.Radio(["1024x1024", "1152x960", "896x1152"], label="Resolution", value="1152x960"),
        gr.Text(value="underexposed, blurry, ugly, washed-out", label="Negative Prompt")
    ],
    outputs=gr.Gallery(height=1024, min_width=1024, columns=2),
    examples=example_prompts,
    title="PixArt 900M",
    description=(
        "This is a 900M parameter model expanded from PixArt Sigma 1024px (600M) by adding 14 layers to deepen the transformer."
        "<br />This model is being <strong>actively trained</strong> on 3.5M samples across a wide distribution of photos, synthetic data, cinema, anime, and safe-for-work furry art."
        "<br />"
        "<br />&nbsp;The datasets been filtered for extremist and illegal content, but it is possible to produce toxic outputs. <strong>This model has not been safety-aligned or fine-tuned</strong>."
        " You may receive non-aesthetic results, or prompts might be partially or wholly ignored."
        "<br />Although celebrity names and artist styles haven't been scrubbed from the datasets, the low volume of these samples in the training set result in a lack of representation for public figures."
        "<br />"
        "<br />Be mindful when using this demo space that you do not inadvertently share images without adequate preparation and informing the receivers that these images are AI generated."
        "<br />"
        "<br />This model was developed and funded by <strong>Terminus Research Group</strong>."
        "<br />"
        "<br />"
        "<ul>"
        "<li>Lead trainer: @pseudoterminalx (bghira@GitHub)</li>"
        "<li>Architecture: @jimmycarter (AmericanPresidentJimmyCarter@GitHub)</li>"
        "<li>Datasets: @ProGamerGov, @jimmycarter, @pseudoterminalx</li>"
        "</ul>"
    )
).launch()