tdurbor commited on
Commit
d19c70c
·
1 Parent(s): 30b7bc6

use green backgrounds + fix button naming

Browse files
Files changed (4) hide show
  1. app.py +17 -12
  2. db.py +2 -0
  3. utils/add_green_background.py +38 -0
  4. utils/upload-to-dataset.py +69 -61
app.py CHANGED
@@ -21,7 +21,7 @@ from huggingface_hub import CommitScheduler
21
  token = os.getenv("HUGGINGFACE_HUB_TOKEN")
22
 
23
  # Load datasets
24
- dataset = load_dataset("bgsys/background-removal-arena-test", split='train')
25
 
26
  # Configure logging
27
  logging.basicConfig(level=logging.INFO)
@@ -131,13 +131,20 @@ def get_notice_markdown():
131
  """
132
 
133
  def compute_mask_difference(segmented_a, segmented_b):
134
- """Compute the absolute difference between two image masks."""
135
  mask_a = np.asarray(segmented_a)
136
  mask_b = np.asarray(segmented_b)
137
 
138
- # Create a binary mask where non-transparent pixels are marked as 1
139
- mask_a_1d = np.where(mask_a[..., 3] != 0, 1, 0)
140
- mask_b_1d = np.where(mask_b[..., 3] != 0, 1, 0)
 
 
 
 
 
 
 
141
 
142
  # Compute the absolute difference between the masks
143
  return np.abs(mask_a_1d - mask_b_1d)
@@ -146,6 +153,7 @@ def gradio_interface():
146
  """Create and return the Gradio interface."""
147
  with gr.Blocks() as demo:
148
  gr.Markdown("# Background Removal Arena")
 
149
 
150
  with gr.Tabs() as tabs:
151
  with gr.Tab("⚔️ Arena (battle)", id=0):
@@ -168,7 +176,7 @@ def gradio_interface():
168
  height=500
169
  )
170
  input_image_display = gr.AnnotatedImage(
171
- value=(input_image, [(mask_difference > 0, "Difference between masks")]),
172
  label="Input Image",
173
  width=500,
174
  height=500
@@ -218,11 +226,8 @@ def gradio_interface():
218
 
219
  try:
220
  logging.debug("Adding vote data to the database: %s", vote_data)
221
-
222
- # Only add vote if running in space
223
- if is_running_in_space():
224
- result = add_vote(vote_data)
225
- logging.info("Vote successfully recorded in the database with ID: %s", result["id"])
226
  except Exception as e:
227
  logging.error("Error recording vote: %s", str(e))
228
 
@@ -236,7 +241,7 @@ def gradio_interface():
236
  # Update the notice markdown with the new vote count
237
  new_notice_markdown = get_notice_markdown()
238
 
239
- return (fpath_input.value, (new_input_image, [(mask_difference, "Mask")]), new_segmented_a,
240
  new_segmented_b, model_a_name.value, model_b_name.value, new_notice_markdown)
241
 
242
  with gr.Tab("🏆 Leaderboard", id=1) as leaderboard_tab:
 
21
  token = os.getenv("HUGGINGFACE_HUB_TOKEN")
22
 
23
  # Load datasets
24
+ dataset = load_dataset("bgsys/background-removal-arena-green", split='train')
25
 
26
  # Configure logging
27
  logging.basicConfig(level=logging.INFO)
 
131
  """
132
 
133
  def compute_mask_difference(segmented_a, segmented_b):
134
+ """Compute the absolute difference between two image masks, ignoring green background."""
135
  mask_a = np.asarray(segmented_a)
136
  mask_b = np.asarray(segmented_b)
137
 
138
+ # Define the green background color
139
+ green_background = (0, 255, 0, 255)
140
+
141
+ # Create a binary mask where non-green and non-transparent pixels are marked as 1
142
+ mask_a_1d = np.where(
143
+ (mask_a[..., :3] != green_background[:3]).any(axis=-1) & (mask_a[..., 3] != 0), 1, 0
144
+ )
145
+ mask_b_1d = np.where(
146
+ (mask_b[..., :3] != green_background[:3]).any(axis=-1) & (mask_b[..., 3] != 0), 1, 0
147
+ )
148
 
149
  # Compute the absolute difference between the masks
150
  return np.abs(mask_a_1d - mask_b_1d)
 
153
  """Create and return the Gradio interface."""
154
  with gr.Blocks() as demo:
155
  gr.Markdown("# Background Removal Arena")
156
+ button_name = "Difference between masks"
157
 
158
  with gr.Tabs() as tabs:
159
  with gr.Tab("⚔️ Arena (battle)", id=0):
 
176
  height=500
177
  )
178
  input_image_display = gr.AnnotatedImage(
179
+ value=(input_image, [(mask_difference > 0, button_name)]),
180
  label="Input Image",
181
  width=500,
182
  height=500
 
226
 
227
  try:
228
  logging.debug("Adding vote data to the database: %s", vote_data)
229
+ result = add_vote(vote_data)
230
+ logging.info("Vote successfully recorded in the database with ID: %s", result["id"])
 
 
 
231
  except Exception as e:
232
  logging.error("Error recording vote: %s", str(e))
233
 
 
241
  # Update the notice markdown with the new vote count
242
  new_notice_markdown = get_notice_markdown()
243
 
244
+ return (fpath_input.value, (new_input_image, [(mask_difference, button_name)]), new_segmented_a,
245
  new_segmented_b, model_a_name.value, model_b_name.value, new_notice_markdown)
246
 
247
  with gr.Tab("🏆 Leaderboard", id=1) as leaderboard_tab:
db.py CHANGED
@@ -1,4 +1,5 @@
1
  import os
 
2
  from sqlalchemy import create_engine, Column, Integer, String, DateTime
3
  from sqlalchemy.ext.declarative import declarative_base
4
  from sqlalchemy.orm import sessionmaker, Session
@@ -48,6 +49,7 @@ def add_vote(vote_data):
48
  db.add(db_vote)
49
  db.commit()
50
  db.refresh(db_vote)
 
51
  return {"id": db_vote.id, "user_id": db_vote.user_id, "timestamp": db_vote.timestamp}
52
 
53
  # Function to get all votes
 
1
  import os
2
+ import logging
3
  from sqlalchemy import create_engine, Column, Integer, String, DateTime
4
  from sqlalchemy.ext.declarative import declarative_base
5
  from sqlalchemy.orm import sessionmaker, Session
 
49
  db.add(db_vote)
50
  db.commit()
51
  db.refresh(db_vote)
52
+ logging.info("Vote registered with ID: %s, using database: %s", db_vote.id, DATABASE_URL)
53
  return {"id": db_vote.id, "user_id": db_vote.user_id, "timestamp": db_vote.timestamp}
54
 
55
  # Function to get all votes
utils/add_green_background.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from PIL import Image
3
+
4
+ def add_green_background_to_image(image_path, output_path, background_color=(0, 255, 0)):
5
+ """Add a green background to an image and save it as PNG."""
6
+ with Image.open(image_path) as img:
7
+ img = img.convert("RGBA")
8
+ background = Image.new("RGBA", img.size, background_color + (255,))
9
+ combined = Image.alpha_composite(background, img)
10
+ combined.save(output_path, "PNG")
11
+
12
+ def process_directory(input_dir, output_dir, background_color=(0, 255, 0)):
13
+ """Recursively process a directory to add a green background to all images and convert them to PNG."""
14
+ if not os.path.exists(output_dir):
15
+ os.makedirs(output_dir)
16
+
17
+ for root, _, files in os.walk(input_dir):
18
+ for file in files:
19
+ if file.lower().endswith(('.png', '.jpg', '.jpeg')):
20
+ input_path = os.path.join(root, file)
21
+ relative_path = os.path.relpath(input_path, input_dir)
22
+ output_path = os.path.join(output_dir, os.path.splitext(relative_path)[0] + '.png')
23
+
24
+ # Ensure the output directory exists
25
+ os.makedirs(os.path.dirname(output_path), exist_ok=True)
26
+
27
+ # Check if the output file already exists
28
+ if not os.path.exists(output_path):
29
+ # Add green background to the image and convert to PNG
30
+ add_green_background_to_image(input_path, output_path, background_color)
31
+ print(f"Processed: {input_path} -> {output_path}")
32
+ else:
33
+ print(f"Skipped: {output_path} already exists")
34
+
35
+ # Example usage
36
+ input_directory = "../../background-removal-arena-v0/train/data/resized"
37
+ output_directory = "../data/resized-green/"
38
+ process_directory(input_directory, output_directory)
utils/upload-to-dataset.py CHANGED
@@ -3,74 +3,82 @@ from huggingface_hub import HfApi
3
  import os
4
  from collections import defaultdict
5
  import pandas as pd
 
6
 
7
- # Define the path to your images
8
- IMAGE_DIR = "../../background-removal-arena-v0/train/data/resized"
 
 
 
 
 
 
 
 
9
 
10
- # Define the dataset features with dedicated columns for each model
11
- features = Features({
12
- "original_image": Image(), # Original image feature
13
- "clipdrop_image": Image(), # Clipdrop segmented image
14
- "bria_image": Image(), # Bria segmented image
15
- "photoroom_image": Image(), # Photoroom segmented image
16
- "removebg_image": Image(), # RemoveBG segmented image
17
- "original_filename": Value("string") # Original filename
18
- })
19
 
20
- # Load image paths and metadata
21
- data = defaultdict(lambda: {
22
- "clipdrop_image": None,
23
- "bria_image": None,
24
- "photoroom_image": None,
25
- "removebg_image": None
26
- })
 
27
 
28
- # Walk into the web-original-images folder
29
- web_original_images_dir = os.path.join(IMAGE_DIR, "web-original-images")
30
- for root, _, files in os.walk(web_original_images_dir):
31
- for f in files:
32
- if f.endswith(('.png', '.jpg', '.jpeg')):
33
- original_image_path = os.path.join(root, f)
34
- data[f]["original_image"] = original_image_path
35
- data[f]["original_filename"] = f
 
 
36
 
37
- # Check for corresponding images in other directories
38
- for source in ["clipdrop", "bria", "photoroom", "removebg"]:
39
- # Check for processed images ending in .png or .jpg
40
- for ext in ['.png', '.jpg']:
41
- processed_image_filename = os.path.splitext(f)[0] + ext
42
- source_image_path = os.path.join(IMAGE_DIR, source, processed_image_filename)
43
-
44
- if os.path.exists(source_image_path):
45
- data[f][f"{source}_image"] = source_image_path
46
- break # Stop checking other extensions if a file is found
47
 
48
- # Convert the data to a dictionary of lists
49
- dataset_dict = {
50
- "original_image": [],
51
- "clipdrop_image": [],
52
- "bria_image": [],
53
- "photoroom_image": [],
54
- "removebg_image": [],
55
- "original_filename": []
56
- }
57
 
58
- for filename, entry in data.items():
59
- if "original_image" in entry:
60
- dataset_dict["original_image"].append(entry["original_image"])
61
- dataset_dict["clipdrop_image"].append(entry["clipdrop_image"])
62
- dataset_dict["bria_image"].append(entry["bria_image"])
63
- dataset_dict["photoroom_image"].append(entry["photoroom_image"])
64
- dataset_dict["removebg_image"].append(entry["removebg_image"])
65
- dataset_dict["original_filename"].append(filename)
66
 
67
- # Save the data dictionary to a CSV file for inspection
68
- df = pd.DataFrame.from_dict(dataset_dict)
69
- df.to_csv("image_data.csv", index=False)
70
 
71
- # Create a Dataset
72
- dataset = Dataset.from_dict(dataset_dict, features=features)
 
73
 
74
- # Push the dataset to Hugging Face Hub
75
- api = HfApi()
76
- dataset.push_to_hub("bgsys/background-removal-arena-test", token=api.token)
 
 
 
 
 
 
3
  import os
4
  from collections import defaultdict
5
  import pandas as pd
6
+ import argparse
7
 
8
+ def upload_to_dataset(image_dir, dataset_name):
9
+ # Define the dataset features with dedicated columns for each model
10
+ features = Features({
11
+ "original_image": Image(), # Original image feature
12
+ "clipdrop_image": Image(), # Clipdrop segmented image
13
+ "bria_image": Image(), # Bria segmented image
14
+ "photoroom_image": Image(), # Photoroom segmented image
15
+ "removebg_image": Image(), # RemoveBG segmented image
16
+ "original_filename": Value("string") # Original filename
17
+ })
18
 
19
+ # Load image paths and metadata
20
+ data = defaultdict(lambda: {
21
+ "clipdrop_image": None,
22
+ "bria_image": None,
23
+ "photoroom_image": None,
24
+ "removebg_image": None
25
+ })
 
 
26
 
27
+ # Walk into the web-original-images folder
28
+ web_original_images_dir = os.path.join(image_dir, "web-original-images")
29
+ for root, _, files in os.walk(web_original_images_dir):
30
+ for f in files:
31
+ if f.endswith(('.png', '.jpg', '.jpeg')):
32
+ original_image_path = os.path.join(root, f)
33
+ data[f]["original_image"] = original_image_path
34
+ data[f]["original_filename"] = f
35
 
36
+ # Check for corresponding images in other directories
37
+ for source in ["clipdrop", "bria", "photoroom", "removebg"]:
38
+ # Check for processed images ending in .png or .jpg
39
+ for ext in ['.png', '.jpg']:
40
+ processed_image_filename = os.path.splitext(f)[0] + ext
41
+ source_image_path = os.path.join(image_dir, source, processed_image_filename)
42
+
43
+ if os.path.exists(source_image_path):
44
+ data[f][f"{source}_image"] = source_image_path
45
+ break # Stop checking other extensions if a file is found
46
 
47
+ # Convert the data to a dictionary of lists
48
+ dataset_dict = {
49
+ "original_image": [],
50
+ "clipdrop_image": [],
51
+ "bria_image": [],
52
+ "photoroom_image": [],
53
+ "removebg_image": [],
54
+ "original_filename": []
55
+ }
 
56
 
57
+ for filename, entry in data.items():
58
+ if "original_image" in entry:
59
+ dataset_dict["original_image"].append(entry["original_image"])
60
+ dataset_dict["clipdrop_image"].append(entry["clipdrop_image"])
61
+ dataset_dict["bria_image"].append(entry["bria_image"])
62
+ dataset_dict["photoroom_image"].append(entry["photoroom_image"])
63
+ dataset_dict["removebg_image"].append(entry["removebg_image"])
64
+ dataset_dict["original_filename"].append(filename)
 
65
 
66
+ # Save the data dictionary to a CSV file for inspection
67
+ df = pd.DataFrame.from_dict(dataset_dict)
68
+ df.to_csv("image_data.csv", index=False)
 
 
 
 
 
69
 
70
+ # Create a Dataset
71
+ dataset = Dataset.from_dict(dataset_dict, features=features)
 
72
 
73
+ # Push the dataset to Hugging Face Hub
74
+ api = HfApi()
75
+ dataset.push_to_hub(dataset_name, token=api.token)
76
 
77
+ if __name__ == "__main__":
78
+ parser = argparse.ArgumentParser(description="Upload images to a Hugging Face dataset.")
79
+ parser.add_argument("image_dir", type=str, help="Directory containing the images.")
80
+ parser.add_argument("dataset_name", type=str, help="Name of the dataset to upload to Hugging Face Hub.")
81
+
82
+ args = parser.parse_args()
83
+
84
+ upload_to_dataset(args.image_dir, args.dataset_name)