Spaces:
Running
Running
Jeet Paul
commited on
Commit
·
67d85c4
1
Parent(s):
530e03c
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import re
|
5 |
+
import pickle
|
6 |
+
import pdfminer
|
7 |
+
from pdfminer.high_level import extract_text
|
8 |
+
from tensorflow.keras.models import Sequential
|
9 |
+
from tensorflow.keras.layers import Embedding, Conv1D, MaxPooling1D, LSTM, Dense, GlobalMaxPooling1D
|
10 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
11 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
12 |
+
from tensorflow.keras.utils import to_categorical
|
13 |
+
from sklearn.preprocessing import LabelEncoder
|
14 |
+
|
15 |
+
|
16 |
+
def cleanResume(resumeText):
|
17 |
+
# Your existing cleanResume function remains unchanged
|
18 |
+
resumeText = re.sub('http\S+\s*', ' ', resumeText)
|
19 |
+
resumeText = re.sub('RT|cc', ' ', resumeText)
|
20 |
+
resumeText = re.sub('#\S+', '', resumeText)
|
21 |
+
resumeText = re.sub('@\S+', ' ', resumeText)
|
22 |
+
resumeText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', resumeText)
|
23 |
+
resumeText = re.sub(r'[^\x00-\x7f]',r' ', resumeText)
|
24 |
+
resumeText = re.sub('\s+', ' ', resumeText)
|
25 |
+
return resumeText
|
26 |
+
|
27 |
+
def pdf_to_text(file):
|
28 |
+
# Use pdfminer.six to extract text from the PDF file
|
29 |
+
text = extract_text(file)
|
30 |
+
return text
|
31 |
+
|
32 |
+
def predict_category(resumes_data, selected_category):
|
33 |
+
# Load the trained DeepRank model
|
34 |
+
model = load_deeprank_model()
|
35 |
+
|
36 |
+
# Process the resumes data
|
37 |
+
resumes_df = pd.DataFrame(resumes_data)
|
38 |
+
resumes_text = resumes_df['ResumeText'].values
|
39 |
+
|
40 |
+
# Tokenize the text and convert to sequences
|
41 |
+
tokenized_text = tokenizer.texts_to_sequences(resumes_text)
|
42 |
+
|
43 |
+
# Pad sequences to have the same length
|
44 |
+
max_sequence_length = 500 # Assuming maximum sequence length of 500 words
|
45 |
+
padded_text = pad_sequences(tokenized_text, maxlen=max_sequence_length)
|
46 |
+
|
47 |
+
# Make predictions
|
48 |
+
predicted_probs = model.predict(padded_text)
|
49 |
+
|
50 |
+
# Assign probabilities to respective job categories
|
51 |
+
for i, category in enumerate(label.classes_):
|
52 |
+
resumes_df[category] = predicted_probs[:, i]
|
53 |
+
|
54 |
+
resumes_df_sorted = resumes_df.sort_values(by=selected_category, ascending=False)
|
55 |
+
|
56 |
+
# Get the ranks for the selected category
|
57 |
+
ranks = []
|
58 |
+
for rank, (idx, row) in enumerate(resumes_df_sorted.iterrows()):
|
59 |
+
rank = rank + 1
|
60 |
+
file_name = row['FileName']
|
61 |
+
ranks.append({'Rank': rank, 'FileName': file_name})
|
62 |
+
|
63 |
+
return ranks
|
64 |
+
|
65 |
+
def load_deeprank_model():
|
66 |
+
# Load the saved DeepRank model
|
67 |
+
model = Sequential()
|
68 |
+
# Add layers to the model (example architecture, adjust as needed)
|
69 |
+
model.add(Embedding(input_dim=vocab_size, output_dim=128, input_length=max_sequence_length))
|
70 |
+
model.add(Conv1D(filters=128, kernel_size=5, activation='relu'))
|
71 |
+
model.add(MaxPooling1D(pool_size=2))
|
72 |
+
model.add(LSTM(64))
|
73 |
+
model.add(Dense(num_classes, activation='softmax'))
|
74 |
+
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
75 |
+
model.load_weights('deeprank_model.h5') # Replace 'deeprank_model.h5' with your saved model file
|
76 |
+
return model
|
77 |
+
|
78 |
+
def main():
|
79 |
+
st.title("Resume Ranking App")
|
80 |
+
st.text("Upload resumes and select a category to rank them.")
|
81 |
+
|
82 |
+
resumes_data = []
|
83 |
+
selected_category = ""
|
84 |
+
|
85 |
+
# Handle multiple file uploads
|
86 |
+
files = st.file_uploader("Upload resumes", type=["pdf"], accept_multiple_files=True)
|
87 |
+
if files:
|
88 |
+
for file in files:
|
89 |
+
text = cleanResume(pdf_to_text(file))
|
90 |
+
resumes_data.append({'ResumeText': text, 'FileName': file.name})
|
91 |
+
selected_category = st.selectbox("Select a category to rank by", label.classes_)
|
92 |
+
|
93 |
+
if st.button("Rank Resumes"):
|
94 |
+
if not resumes_data or not selected_category:
|
95 |
+
st.warning("Please upload resumes and select a category to continue.")
|
96 |
+
else:
|
97 |
+
ranks = predict_category(resumes_data, selected_category)
|
98 |
+
st.write(pd.DataFrame(ranks))
|
99 |
+
|
100 |
+
if __name__ == '__main__':
|
101 |
+
# Load label encoder and tokenizer
|
102 |
+
df = pd.read_csv('UpdatedResumeDataSet.csv')
|
103 |
+
df['cleaned'] = df['Resume'].apply(lambda x: cleanResume(x))
|
104 |
+
label = LabelEncoder()
|
105 |
+
df['Category'] = label.fit_transform(df['Category'])
|
106 |
+
|
107 |
+
# Tokenize text and get vocabulary size and number of classes
|
108 |
+
text = df['cleaned'].values
|
109 |
+
tokenizer = Tokenizer()
|
110 |
+
tokenizer.fit_on_texts(text)
|
111 |
+
vocab_size = len(tokenizer.word_index) + 1
|
112 |
+
num_classes = len(label.classes_)
|
113 |
+
|
114 |
+
main()
|