Spaces:
Runtime error
Runtime error
Upload Build_VecStore.ipynb
Browse files- Build_VecStore.ipynb +282 -0
Build_VecStore.ipynb
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "QS0v2bceN4Or"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"Builds a database of vector embeddings from list of abstracts"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "markdown",
|
14 |
+
"metadata": {
|
15 |
+
"id": "l5RwcIG8OAjX"
|
16 |
+
},
|
17 |
+
"source": [
|
18 |
+
"## Some Setup"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": null,
|
24 |
+
"metadata": {
|
25 |
+
"id": "sfwT5YW2JCnu"
|
26 |
+
},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"!pip install transformers==4.28.0\n",
|
30 |
+
"!pip install -U sentence-transformers\n",
|
31 |
+
"!pip install datasets\n",
|
32 |
+
"!pip install langchain\n",
|
33 |
+
"!pip install torch\n",
|
34 |
+
"!pip install faiss-cpu"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {
|
41 |
+
"id": "psoTvOp4VkBE"
|
42 |
+
},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"import os\n",
|
46 |
+
"import shutil\n",
|
47 |
+
"\n",
|
48 |
+
"import numpy as np\n",
|
49 |
+
"import pandas as pd\n",
|
50 |
+
"from tqdm.auto import tqdm\n",
|
51 |
+
"import torch"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
+
"metadata": {
|
58 |
+
"id": "arZiN8QRHS_a"
|
59 |
+
},
|
60 |
+
"outputs": [],
|
61 |
+
"source": [
|
62 |
+
"import locale\n",
|
63 |
+
"locale.getpreferredencoding = lambda: \"UTF-8\""
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": null,
|
69 |
+
"metadata": {
|
70 |
+
"id": "JwWs0-Uu6ohg"
|
71 |
+
},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"from transformers import AutoTokenizer, BertForSequenceClassification\n",
|
75 |
+
"\n",
|
76 |
+
"m_tokenizer = AutoTokenizer.from_pretrained(\"biodatlab/MIReAD-Neuro-Large\")\n",
|
77 |
+
"m_model = BertForSequenceClassification.from_pretrained(\"biodatlab/MIReAD-Neuro-Large\")\n",
|
78 |
+
"miread_bundle = (m_tokenizer,m_model)"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": null,
|
84 |
+
"metadata": {
|
85 |
+
"id": "BR-adEUUz9su"
|
86 |
+
},
|
87 |
+
"outputs": [],
|
88 |
+
"source": [
|
89 |
+
"def create_lbert_embed(sents,bundle):\n",
|
90 |
+
" tokenizer = bundle[0]\n",
|
91 |
+
" model = bundle[1]\n",
|
92 |
+
" model.cuda()\n",
|
93 |
+
" tokens = tokenizer(sents,padding=True,truncation=True,return_tensors='pt')\n",
|
94 |
+
" device = torch.device('cuda')\n",
|
95 |
+
" tokens = tokens.to(device)\n",
|
96 |
+
" with torch.no_grad():\n",
|
97 |
+
" embeds = model(**tokens, output_hidden_states=True,return_dict=True).pooler_output\n",
|
98 |
+
" return embeds.cpu()\n",
|
99 |
+
"\n",
|
100 |
+
"def create_miread_embed(sents,bundle):\n",
|
101 |
+
" tokenizer = bundle[0]\n",
|
102 |
+
" model = bundle[1]\n",
|
103 |
+
" model.cuda()\n",
|
104 |
+
" tokens = tokenizer(sents,\n",
|
105 |
+
" max_length=512,\n",
|
106 |
+
" padding=True,\n",
|
107 |
+
" truncation=True,\n",
|
108 |
+
" return_tensors=\"pt\"\n",
|
109 |
+
" )\n",
|
110 |
+
" device = torch.device('cuda')\n",
|
111 |
+
" tokens = tokens.to(device)\n",
|
112 |
+
" with torch.no_grad():\n",
|
113 |
+
" out = model.bert(**tokens)\n",
|
114 |
+
" feature = out.last_hidden_state[:, 0, :]\n",
|
115 |
+
" return feature.cpu()"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"metadata": {
|
122 |
+
"id": "-wHpHmD3zNSR"
|
123 |
+
},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"from langchain.vectorstores import FAISS\n",
|
127 |
+
"from langchain.embeddings import HuggingFaceEmbeddings\n",
|
128 |
+
"\n",
|
129 |
+
"model_name = \"biodatlab/MIReAD-Neuro\"\n",
|
130 |
+
"model_kwargs = {'device': 'cuda'}\n",
|
131 |
+
"encode_kwargs = {'normalize_embeddings': False}\n",
|
132 |
+
"faiss_embedder = HuggingFaceEmbeddings(\n",
|
133 |
+
" model_name=model_name,\n",
|
134 |
+
" model_kwargs=model_kwargs,\n",
|
135 |
+
" encode_kwargs=encode_kwargs\n",
|
136 |
+
")\n",
|
137 |
+
"\n",
|
138 |
+
"def add_to_db(data,create_embed,bundle,name=''):\n",
|
139 |
+
" batch_size = 128\n",
|
140 |
+
" \"\"\"\n",
|
141 |
+
" data : list of rows with an 'abstract' and an 'identifier' field\n",
|
142 |
+
" index : pinecone Index object\n",
|
143 |
+
" create_embed : function that creates the embedding given an abstract\n",
|
144 |
+
" \"\"\"\n",
|
145 |
+
" res = []\n",
|
146 |
+
" vecdb = None\n",
|
147 |
+
" for i in tqdm(range(0, len(data), batch_size)):\n",
|
148 |
+
" # find end of batch\n",
|
149 |
+
" i_end = min(i+batch_size, len(data))\n",
|
150 |
+
" # create IDs batch\n",
|
151 |
+
" ids = [name + '-' + str(x) for x in range(i, i_end)]\n",
|
152 |
+
" # create metadata batch\n",
|
153 |
+
" metadatas = [{\n",
|
154 |
+
" 'journal':row.get('journal','None'),\n",
|
155 |
+
" 'title':row['title'],\n",
|
156 |
+
" 'abstract': row['abstract'],\n",
|
157 |
+
" 'authors':row.get('authors','None'),\n",
|
158 |
+
" 'link':row.get('link','None'),\n",
|
159 |
+
" 'date':row.get('date','None'),\n",
|
160 |
+
" 'submitter':row.get('submitter','None'),\n",
|
161 |
+
" } for row in data[i:i_end]]\n",
|
162 |
+
" # create embeddings\n",
|
163 |
+
" em = [create_embed(row['abstract'],bundle).tolist()[0] for row in data[i:i_end]]\n",
|
164 |
+
" texts = [row['abstract'] for row in data[i:i_end]]\n",
|
165 |
+
" records = list(zip(texts, em))\n",
|
166 |
+
" if vecdb:\n",
|
167 |
+
" vecdb_batch = FAISS.from_embeddings(records,faiss_embedder,metadatas=metadatas,ids=ids)\n",
|
168 |
+
" vecdb.merge_from(vecdb_batch)\n",
|
169 |
+
" else:\n",
|
170 |
+
" vecdb = FAISS.from_embeddings(records,faiss_embedder,metadatas=metadatas,ids=ids)\n",
|
171 |
+
" return vecdb"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": null,
|
177 |
+
"metadata": {
|
178 |
+
"id": "PfsK3DE4MMou"
|
179 |
+
},
|
180 |
+
"outputs": [],
|
181 |
+
"source": [
|
182 |
+
"nbdt_data = pd.read_json('data_final.json')\n",
|
183 |
+
"aliases = pd.read_csv('id_list.csv')"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"cell_type": "code",
|
188 |
+
"execution_count": null,
|
189 |
+
"metadata": {
|
190 |
+
"id": "JrGJh5XgNPvU"
|
191 |
+
},
|
192 |
+
"outputs": [],
|
193 |
+
"source": [
|
194 |
+
"aliases = aliases.drop_duplicates('Full Name')\n",
|
195 |
+
"aliases.head()"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": null,
|
201 |
+
"metadata": {
|
202 |
+
"id": "CShYwGwWMZh5"
|
203 |
+
},
|
204 |
+
"outputs": [],
|
205 |
+
"source": [
|
206 |
+
"nbdt_data.head()"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"cell_type": "code",
|
211 |
+
"execution_count": null,
|
212 |
+
"metadata": {
|
213 |
+
"id": "SziJtbggMuyn"
|
214 |
+
},
|
215 |
+
"outputs": [],
|
216 |
+
"source": [
|
217 |
+
"def load_nbdt(data,aliases):\n",
|
218 |
+
" nbdt_records = []\n",
|
219 |
+
" urls = []\n",
|
220 |
+
" no_abst_count = 0\n",
|
221 |
+
" no_journal_count = 0\n",
|
222 |
+
" for row in aliases.itertuples():\n",
|
223 |
+
" name = row[1]\n",
|
224 |
+
" auth_ids = eval(row[2])\n",
|
225 |
+
" auth_ids = [int(x) for x in auth_ids]\n",
|
226 |
+
" papers = nbdt_data.loc[nbdt_data['authorId'].isin(auth_ids)]['papers']\n",
|
227 |
+
" all_papers = []\n",
|
228 |
+
" for paper_set in papers:\n",
|
229 |
+
" all_papers.extend(paper_set)\n",
|
230 |
+
" for paper in all_papers:\n",
|
231 |
+
" url = paper['url']\n",
|
232 |
+
" title = paper['title']\n",
|
233 |
+
" abst = paper['abstract']\n",
|
234 |
+
" year = paper['year']\n",
|
235 |
+
" journal = paper.get('journal')\n",
|
236 |
+
" if journal:\n",
|
237 |
+
" journal = journal.get('name')\n",
|
238 |
+
" else:\n",
|
239 |
+
" journal = 'None'\n",
|
240 |
+
" no_journal_count += 1\n",
|
241 |
+
" authors = [name]\n",
|
242 |
+
" if not(abst):\n",
|
243 |
+
" abst = ''\n",
|
244 |
+
" no_abst_count += 1\n",
|
245 |
+
" record = {'journal':journal,'title':title,'abstract':abst,'link':url,'date':year,'authors':authors,'submitter':'None'}\n",
|
246 |
+
" if url not in urls:\n",
|
247 |
+
" nbdt_records.append(record)\n",
|
248 |
+
" urls.append(url)\n",
|
249 |
+
" return nbdt_records, (no_abst_count,no_journal_count)\n",
|
250 |
+
"nbdt_recs, no_counts = load_nbdt(nbdt_data,aliases)"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": null,
|
256 |
+
"metadata": {
|
257 |
+
"id": "IovTlDINc2Ds"
|
258 |
+
},
|
259 |
+
"outputs": [],
|
260 |
+
"source": [
|
261 |
+
"nbdt_db = add_to_db(nbdt_recs,create_miread_embed,miread_bundle,'nbdt')\n",
|
262 |
+
"nbdt_db.save_local(\"nbdt_index\")"
|
263 |
+
]
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"metadata": {
|
267 |
+
"accelerator": "GPU",
|
268 |
+
"colab": {
|
269 |
+
"gpuType": "T4",
|
270 |
+
"provenance": []
|
271 |
+
},
|
272 |
+
"kernelspec": {
|
273 |
+
"display_name": "Python 3",
|
274 |
+
"name": "python3"
|
275 |
+
},
|
276 |
+
"language_info": {
|
277 |
+
"name": "python"
|
278 |
+
}
|
279 |
+
},
|
280 |
+
"nbformat": 4,
|
281 |
+
"nbformat_minor": 0
|
282 |
+
}
|