Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import cv2
|
2 |
-
import csv
|
3 |
import tempfile
|
4 |
import gradio as gr
|
5 |
from ultralytics import YOLO
|
|
|
6 |
|
7 |
def process_video(video_file):
|
8 |
# Define colors for each class (8 classes)
|
@@ -26,49 +26,62 @@ def process_video(video_file):
|
|
26 |
# Open the video file
|
27 |
cap = cv2.VideoCapture(video_file)
|
28 |
|
29 |
-
# Prepare
|
30 |
-
|
31 |
-
|
32 |
-
writer = csv.writer(csv_file)
|
33 |
-
writer.writerow(["frame", "id", "class", "x", "y", "w", "h"])
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
|
64 |
# Release the video capture
|
65 |
cap.release()
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# Create a Gradio interface
|
70 |
inputs = gr.Video(label="Input Video")
|
71 |
-
|
|
|
|
|
|
|
72 |
|
73 |
-
gr.Interface(fn=process_video, inputs=inputs, outputs=
|
74 |
|
|
|
1 |
import cv2
|
|
|
2 |
import tempfile
|
3 |
import gradio as gr
|
4 |
from ultralytics import YOLO
|
5 |
+
import pandas as pd
|
6 |
|
7 |
def process_video(video_file):
|
8 |
# Define colors for each class (8 classes)
|
|
|
26 |
# Open the video file
|
27 |
cap = cv2.VideoCapture(video_file)
|
28 |
|
29 |
+
# Prepare DataFrame for storing detection data
|
30 |
+
columns = ["frame", "id", "class", "x", "y", "w", "h"]
|
31 |
+
df = pd.DataFrame(columns=columns)
|
|
|
|
|
32 |
|
33 |
+
frame_id = 0
|
34 |
|
35 |
+
# Loop through the video frames
|
36 |
+
while cap.isOpened():
|
37 |
+
# Read a frame from the video
|
38 |
+
success, frame = cap.read()
|
39 |
|
40 |
+
if success:
|
41 |
+
frame_id += 1
|
42 |
|
43 |
+
# Run YOLOv8 tracking on the frame, persisting tracks between frames
|
44 |
+
results = model.track(frame, persist=True, tracker="insect_tracker.yaml")
|
45 |
|
46 |
+
for result in results:
|
47 |
+
boxes = result.boxes.cpu().numpy()
|
48 |
+
confidences = boxes.conf
|
49 |
+
class_ids = boxes.cls
|
50 |
|
51 |
+
for i, box in enumerate(boxes):
|
52 |
+
class_id = int(class_ids[i])
|
53 |
+
confidence = confidences[i]
|
54 |
|
55 |
+
# Append detection data to DataFrame
|
56 |
+
new_row = pd.DataFrame({
|
57 |
+
"frame": [frame_id],
|
58 |
+
"id": [box.id],
|
59 |
+
"class": [int(box.cls[0])],
|
60 |
+
"x": [box.xywh[0][0]],
|
61 |
+
"y": [box.xywh[0][1]],
|
62 |
+
"w": [box.xywh[0][2]],
|
63 |
+
"h": [box.xywh[0][3]]
|
64 |
+
})
|
65 |
+
df = pd.concat([df, new_row], ignore_index=True)
|
66 |
|
67 |
+
else:
|
68 |
+
break
|
69 |
|
70 |
# Release the video capture
|
71 |
cap.release()
|
72 |
|
73 |
+
# Save DataFrame to CSV
|
74 |
+
csv_path = tempfile.mktemp(suffix=".csv")
|
75 |
+
df.to_csv(csv_path, index=False)
|
76 |
+
|
77 |
+
return df, csv_path
|
78 |
|
79 |
# Create a Gradio interface
|
80 |
inputs = gr.Video(label="Input Video")
|
81 |
+
outputs = [
|
82 |
+
gr.DataFrame(label="Detection Data"),
|
83 |
+
gr.File(label="Download CSV")
|
84 |
+
]
|
85 |
|
86 |
+
gr.Interface(fn=process_video, inputs=inputs, outputs=outputs).launch()
|
87 |
|