Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import tempfile
|
4 |
+
import numpy as np
|
5 |
+
from ultralytics import YOLO
|
6 |
+
|
7 |
+
# Load the YOLOv8 model
|
8 |
+
model = YOLO('yolov8m.pt') # Ensure you have the correct model path
|
9 |
+
|
10 |
+
def process_video(video_file):
|
11 |
+
# Create a temporary directory to store processed frames
|
12 |
+
temp_dir = tempfile.TemporaryDirectory()
|
13 |
+
|
14 |
+
# Open the video file
|
15 |
+
cap = cv2.VideoCapture(video_file.name)
|
16 |
+
|
17 |
+
# Get video properties
|
18 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
19 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
20 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
21 |
+
codec = cv2.VideoWriter_fourcc(*'mp4v')
|
22 |
+
|
23 |
+
# Create a VideoWriter object to save the processed video
|
24 |
+
output_path = f"{temp_dir.name}/output.mp4"
|
25 |
+
out = cv2.VideoWriter(output_path, codec, fps, (width, height))
|
26 |
+
|
27 |
+
while cap.isOpened():
|
28 |
+
ret, frame = cap.read()
|
29 |
+
if not ret:
|
30 |
+
break
|
31 |
+
|
32 |
+
# Use YOLO model to detect objects in the frame
|
33 |
+
results = model(frame)
|
34 |
+
|
35 |
+
# Draw bounding boxes and labels on the frame
|
36 |
+
annotated_frame = results[0].plot()
|
37 |
+
|
38 |
+
# Write the frame to the output video
|
39 |
+
out.write(annotated_frame)
|
40 |
+
|
41 |
+
# Release the VideoCapture and VideoWriter objects
|
42 |
+
cap.release()
|
43 |
+
out.release()
|
44 |
+
|
45 |
+
return output_path
|
46 |
+
|
47 |
+
# Define the Gradio interface
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=process_video,
|
50 |
+
inputs=gr.inputs.Video(type="file"),
|
51 |
+
outputs=gr.outputs.Video(),
|
52 |
+
title="YOLOv8 Video Object Detection",
|
53 |
+
description="Upload a video and apply YOLOv8 object detection."
|
54 |
+
)
|
55 |
+
|
56 |
+
# Launch the Gradio app
|
57 |
+
if __name__ == "__main__":
|
58 |
+
iface.launch()
|