File size: 673 Bytes
c49f003
 
 
e0f9e95
c49f003
e0f9e95
 
c49f003
 
e0f9e95
c49f003
 
e0f9e95
 
 
c49f003
 
 
 
 
e0f9e95
c49f003
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
import gradio as gr

from pipeline import AudioPipeline


model_id = 'bjpietrzak/music_mind_distillhubert_gtzan_4e-5_WAdam_CosineCheguler'

feature_extractor = AutoFeatureExtractor.from_pretrained(
    model_id, do_normalize=True, return_attention_mask=True
)

model = AutoModelForAudioClassification.from_pretrained(model_id)

audio_pipeline = AudioPipeline(feature_extractor, model, top_k=7)


demo = gr.Interface(
    fn=audio_pipeline,
    inputs=[gr.Audio(type="filepath", label="Upload Audio")],
    outputs=gr.Label(num_top_classes=7),
    title="Music Mind",
)

demo.launch(debug=True)