File size: 9,349 Bytes
08d80be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from typing import Literal, Optional
from io import IOBase
import os
from pathlib import Path
import shutil
import subprocess
from rich.progress import Progress
from rich.console import Console

console = Console()

class FailedProcess(Exception):
    pass

def colmap_feature_extraction(
        database_path: Path, 
        image_path: Path, 
        camera: Literal["OPENCV"], 
        colmap_command: str = "colmap", 
        use_gpu: bool = True,
        stream_file: Optional[IOBase] = None
    ):
    total = len(list(image_path.glob("*.jpg")))
    with Progress(console=console) as progress:
        task = progress.add_task("Feature Extraction", total=total)

        database_path.parent.mkdir(parents=True, exist_ok=True)
        cmd = [
            colmap_command,
            "feature_extractor",
            "--database_path", database_path.as_posix(),
            "--image_path", image_path.as_posix(),
            "--ImageReader.single_camera", "1",
            "--ImageReader.camera_model", camera,
            "--SiftExtraction.use_gpu", "1" if use_gpu else "0",
            # "--SiftExtraction.domain_size_pooling", "1",
            # "--SiftExtraction.estimate_affine_shape", "1"
        ]
        console.log(f"πŸ’» Executing command: {' '.join(cmd)}")
        
        _stdout = stream_file if stream_file else subprocess.PIPE
        with subprocess.Popen(cmd, stdout=_stdout, stderr=subprocess.STDOUT, text=True) as process:
            if process.stdout:
                for line in process.stdout:
                    if line.startswith("Processed file "):
                        line_process = line\
                            .replace("Processed file [", "")\
                            .replace("]", "")\
                            .replace("\n", "")
                        current, total = line_process.split("/")
                        progress.update(task, completed=int(current), total=int(total), refresh=True)

        progress.update(task, completed=int(total), refresh=True)

    return_code = process.returncode
    
    if return_code == 0:
        
        console.log(f'Feature stored in {database_path.as_posix()}.')
        console.log('βœ… Feature extraction completed.')
    else:
        raise FailedProcess("Feature extraction failed.")

def colmap_feature_matching(
        database_path: Path,
        image_path: Path,
        colmap_command: str = "colmap",
        use_gpu: bool = True,
        stream_file: Optional[IOBase] = None
    ):
    total = len(list(image_path.glob("*.jpg")))
    with Progress(console=console) as progress:
        task = progress.add_task("Feature Matching", total=total)

        database_path
        cmd = [
            colmap_command,
            "exhaustive_matcher",
            "--database_path", database_path.as_posix(),
            "--SiftMatching.use_gpu", "1" if use_gpu else "0"
        ]
        console.log(f"πŸ’» Executing command: {' '.join(cmd)}")
        
        _stdout = stream_file if stream_file else subprocess.PIPE
        with subprocess.Popen(cmd, stdout=_stdout, stderr=subprocess.STDOUT, text=True) as process:
            if process.stdout:
                for line in process.stdout:
                    pass

        progress.update(task, completed=int(total), refresh=True)
    
    return_code = process.returncode

    if return_code == 0:
        
        console.log('βœ… Feature matching completed.')
    else:
        raise FailedProcess("Feature matching failed.")

def colmap_bundle_adjustment(
        database_path: Path,
        image_path: Path,
        sparse_path: Path,
        colmap_command: str = "colmap",
        stream_file: Optional[IOBase] = None
    ):
    total = len(list(image_path.glob("*.jpg")))
    with Progress(console=console) as progress:
        task = progress.add_task("Bundle Adjustment", total=total)

        cmd = [
            colmap_command,
            "mapper",
            "--database_path", database_path.as_posix(),
            "--image_path", image_path.as_posix(),
            "--output_path", sparse_path.as_posix(),
            "--Mapper.ba_global_function_tolerance=0.000001"
            # "--Mapper.ba_local_max_num_iterations", "40",
            # "--Mapper.ba_global_max_num_iterations", "100",
            # "--Mapper.ba_local_max_refinements", "3",
            # "--Mapper.ba_global_max_refinements", "5"
        ]
        console.log(f"πŸ’» Executing command: {' '.join(cmd)}")

        sparse_path.mkdir(parents=True, exist_ok=True)
        
        _stdout = stream_file if stream_file else subprocess.PIPE
        with subprocess.Popen(cmd, stdout=_stdout, stderr=subprocess.STDOUT, text=True) as process:
            if process.stdout:
                for line in process.stdout:
                    print(line)
                    if line.startswith("Registering image #"):
                        line_process = line\
                            .replace("Registering image #", "")\
                            .replace("\n", "")
                        *_, current = line_process.split("(")
                        current, *_ = current.split(")")
                        progress.update(task, completed=int(current), refresh=True)

        progress.update(task, completed=int(total), refresh=True)

    return_code = process.returncode

    if return_code == 0:
        console.log('βœ… Bundle adjustment completed.')
    else:
        raise FailedProcess("Bundle adjustment failed.")

def colmap_image_undistortion(
        image_path: Path,
        sparse0_path: Path,
        source_path: Path,
        colmap_command: str = "colmap",
        stream_file: Optional[IOBase] = None
    ):
    total = len(list(image_path.glob("*.jpg")))
    with Progress(console=console) as progress:
        task = progress.add_task("Image Undistortion", total=total)
        cmd = [
            colmap_command,
            "image_undistorter",
            "--image_path", image_path.as_posix(),
            "--input_path", sparse0_path.as_posix(),
            "--output_path", source_path.as_posix(),
            "--output_type", "COLMAP"
        ]
        console.log(f"πŸ’» Executing command: {' '.join(cmd)}")

        _stdout = stream_file if stream_file else subprocess.PIPE
        with subprocess.Popen(cmd, stdout=_stdout, stderr=subprocess.STDOUT, text=True) as process:
            if process.stdout:
                for line in process.stdout:
                    if line.startswith("Undistorting image ["):
                        line_process = line\
                            .replace("Undistorting image [", "")\
                            .replace("]", "")\
                            .replace("\n", "")
                        current, total = line_process.split("/")
                        progress.update(task, completed=int(current), total=int(total), refresh=True)

        progress.update(task, completed=int(total), refresh=True)

    return_code = process.returncode

    if return_code == 0:
        console.log('βœ… Image undistortion completed.')
    else:
        raise FailedProcess("Image undistortion failed.")

def colmap(
    source_path: Path,
    camera: Literal["OPENCV"] = "OPENCV",
    colmap_command: str = "colmap",
    use_gpu: bool = True,
    skip_matching: bool = False,
    stream_file: Optional[IOBase] = None
):
    image_path = source_path / "input"
    if not image_path.exists():
        raise Exception(f"Image path {image_path} does not exist. Exiting.")

    total = len(list(image_path.glob("*.jpg")))
    if total == 0:
        raise Exception(f"No images found in {image_path}. Exiting.")

    database_path = source_path / "distorted" / "database.db"

    sparse_path = source_path / "distorted" / "sparse"

    if not skip_matching:
        colmap_feature_extraction(database_path, image_path, camera, colmap_command, use_gpu, stream_file)
        colmap_feature_matching(database_path, image_path, colmap_command, use_gpu, stream_file)
        colmap_bundle_adjustment(database_path, image_path, sparse_path, colmap_command, stream_file)

    colmap_image_undistortion(image_path, sparse_path / "0", source_path, colmap_command, stream_file)

    origin_path = source_path / "sparse"
    destination_path = source_path / "sparse" / "0"
    destination_path.mkdir(exist_ok=True)
    console.log(f"🌟 Moving files from {origin_path} to {destination_path}")
    for file in os.listdir(origin_path):
        if file == '0':
            continue
        source_file = os.path.join(origin_path, file)
        destination_file = os.path.join(destination_path, file)
        shutil.copy(source_file, destination_file)

if __name__ == "__main__":
    import tempfile
    with tempfile.NamedTemporaryFile(mode='w+t') as temp_file:
        print(f"Using temp file: {temp_file.name}")
        try:
            colmap(
                source_path = Path("/home/europe/Desktop/gaussian-splatting-kit/test/"),
                camera = "OPENCV",
                colmap_command = "colmap",
                use_gpu = True,
                skip_matching = False,
                stream_file = open("/home/europe/Desktop/gaussian-splatting-kit/test.log", "w+t")
            )
        except FailedProcess:
            console.log("🚨 Error executing colmap.")
            temp_file.seek(0)
            print(temp_file.read())