Spaces:
Running
Running
Fix bug in login functionality
Browse files- TwinLite.py +468 -0
TwinLite.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
from torch.nn import Module, Conv2d, Parameter, Softmax
|
6 |
+
|
7 |
+
class PAM_Module(Module):
|
8 |
+
""" Position attention module"""
|
9 |
+
#Ref from SAGAN
|
10 |
+
def __init__(self, in_dim):
|
11 |
+
super(PAM_Module, self).__init__()
|
12 |
+
self.chanel_in = in_dim
|
13 |
+
|
14 |
+
self.query_conv = Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
|
15 |
+
self.key_conv = Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
|
16 |
+
self.value_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
|
17 |
+
self.gamma = Parameter(torch.zeros(1))
|
18 |
+
|
19 |
+
self.softmax = Softmax(dim=-1)
|
20 |
+
def forward(self, x):
|
21 |
+
"""
|
22 |
+
inputs :
|
23 |
+
x : input feature maps( B X C X H X W)
|
24 |
+
returns :
|
25 |
+
out : attention value + input feature
|
26 |
+
attention: B X (HxW) X (HxW)
|
27 |
+
"""
|
28 |
+
m_batchsize, C, height, width = x.size()
|
29 |
+
proj_query = self.query_conv(x).view(m_batchsize, -1, width*height).permute(0, 2, 1)
|
30 |
+
proj_key = self.key_conv(x).view(m_batchsize, -1, width*height)
|
31 |
+
energy = torch.bmm(proj_query, proj_key)
|
32 |
+
attention = self.softmax(energy)
|
33 |
+
proj_value = self.value_conv(x).view(m_batchsize, -1, width*height)
|
34 |
+
|
35 |
+
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
|
36 |
+
out = out.view(m_batchsize, C, height, width)
|
37 |
+
|
38 |
+
out = self.gamma*out + x
|
39 |
+
return out
|
40 |
+
class CAM_Module(Module):
|
41 |
+
""" Channel attention module"""
|
42 |
+
def __init__(self, in_dim):
|
43 |
+
super(CAM_Module, self).__init__()
|
44 |
+
self.chanel_in = in_dim
|
45 |
+
|
46 |
+
|
47 |
+
self.gamma = Parameter(torch.zeros(1))
|
48 |
+
self.softmax = Softmax(dim=-1)
|
49 |
+
def forward(self,x):
|
50 |
+
"""
|
51 |
+
inputs :
|
52 |
+
x : input feature maps( B X C X H X W)
|
53 |
+
returns :
|
54 |
+
out : attention value + input feature
|
55 |
+
attention: B X C X C
|
56 |
+
"""
|
57 |
+
m_batchsize, C, height, width = x.size()
|
58 |
+
proj_query = x.view(m_batchsize, C, -1)
|
59 |
+
proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1)
|
60 |
+
energy = torch.bmm(proj_query, proj_key)
|
61 |
+
energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy
|
62 |
+
attention = self.softmax(energy_new)
|
63 |
+
proj_value = x.view(m_batchsize, C, -1)
|
64 |
+
|
65 |
+
out = torch.bmm(attention, proj_value)
|
66 |
+
out = out.view(m_batchsize, C, height, width)
|
67 |
+
|
68 |
+
out = self.gamma*out + x
|
69 |
+
return out
|
70 |
+
|
71 |
+
|
72 |
+
class UPx2(nn.Module):
|
73 |
+
'''
|
74 |
+
This class defines the convolution layer with batch normalization and PReLU activation
|
75 |
+
'''
|
76 |
+
def __init__(self, nIn, nOut):
|
77 |
+
'''
|
78 |
+
|
79 |
+
:param nIn: number of input channels
|
80 |
+
:param nOut: number of output channels
|
81 |
+
:param kSize: kernel size
|
82 |
+
:param stride: stride rate for down-sampling. Default is 1
|
83 |
+
'''
|
84 |
+
super().__init__()
|
85 |
+
self.deconv = nn.ConvTranspose2d(nIn, nOut, 2, stride=2, padding=0, output_padding=0, bias=False)
|
86 |
+
self.bn = nn.BatchNorm2d(nOut, eps=1e-03)
|
87 |
+
self.act = nn.PReLU(nOut)
|
88 |
+
|
89 |
+
def forward(self, input):
|
90 |
+
'''
|
91 |
+
:param input: input feature map
|
92 |
+
:return: transformed feature map
|
93 |
+
'''
|
94 |
+
output = self.deconv(input)
|
95 |
+
output = self.bn(output)
|
96 |
+
output = self.act(output)
|
97 |
+
return output
|
98 |
+
def fuseforward(self, input):
|
99 |
+
output = self.deconv(input)
|
100 |
+
output = self.act(output)
|
101 |
+
return output
|
102 |
+
|
103 |
+
class CBR(nn.Module):
|
104 |
+
'''
|
105 |
+
This class defines the convolution layer with batch normalization and PReLU activation
|
106 |
+
'''
|
107 |
+
def __init__(self, nIn, nOut, kSize, stride=1):
|
108 |
+
'''
|
109 |
+
|
110 |
+
:param nIn: number of input channels
|
111 |
+
:param nOut: number of output channels
|
112 |
+
:param kSize: kernel size
|
113 |
+
:param stride: stride rate for down-sampling. Default is 1
|
114 |
+
'''
|
115 |
+
super().__init__()
|
116 |
+
padding = int((kSize - 1)/2)
|
117 |
+
#self.conv = nn.Conv2d(nIn, nOut, kSize, stride=stride, padding=padding, bias=False)
|
118 |
+
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)
|
119 |
+
#self.conv1 = nn.Conv2d(nOut, nOut, (1, kSize), stride=1, padding=(0, padding), bias=False)
|
120 |
+
self.bn = nn.BatchNorm2d(nOut, eps=1e-03)
|
121 |
+
self.act = nn.PReLU(nOut)
|
122 |
+
|
123 |
+
def forward(self, input):
|
124 |
+
'''
|
125 |
+
:param input: input feature map
|
126 |
+
:return: transformed feature map
|
127 |
+
'''
|
128 |
+
output = self.conv(input)
|
129 |
+
#output = self.conv1(output)
|
130 |
+
output = self.bn(output)
|
131 |
+
output = self.act(output)
|
132 |
+
return output
|
133 |
+
def fuseforward(self, input):
|
134 |
+
output = self.conv(input)
|
135 |
+
output = self.act(output)
|
136 |
+
return output
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
class CB(nn.Module):
|
143 |
+
'''
|
144 |
+
This class groups the convolution and batch normalization
|
145 |
+
'''
|
146 |
+
def __init__(self, nIn, nOut, kSize, stride=1):
|
147 |
+
'''
|
148 |
+
:param nIn: number of input channels
|
149 |
+
:param nOut: number of output channels
|
150 |
+
:param kSize: kernel size
|
151 |
+
:param stride: optinal stide for down-sampling
|
152 |
+
'''
|
153 |
+
super().__init__()
|
154 |
+
padding = int((kSize - 1)/2)
|
155 |
+
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)
|
156 |
+
self.bn = nn.BatchNorm2d(nOut, eps=1e-03)
|
157 |
+
|
158 |
+
def forward(self, input):
|
159 |
+
'''
|
160 |
+
|
161 |
+
:param input: input feature map
|
162 |
+
:return: transformed feature map
|
163 |
+
'''
|
164 |
+
output = self.conv(input)
|
165 |
+
output = self.bn(output)
|
166 |
+
return output
|
167 |
+
|
168 |
+
class C(nn.Module):
|
169 |
+
'''
|
170 |
+
This class is for a convolutional layer.
|
171 |
+
'''
|
172 |
+
def __init__(self, nIn, nOut, kSize, stride=1):
|
173 |
+
'''
|
174 |
+
|
175 |
+
:param nIn: number of input channels
|
176 |
+
:param nOut: number of output channels
|
177 |
+
:param kSize: kernel size
|
178 |
+
:param stride: optional stride rate for down-sampling
|
179 |
+
'''
|
180 |
+
super().__init__()
|
181 |
+
padding = int((kSize - 1)/2)
|
182 |
+
# print(nIn, nOut, (kSize, kSize))
|
183 |
+
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)
|
184 |
+
|
185 |
+
def forward(self, input):
|
186 |
+
'''
|
187 |
+
:param input: input feature map
|
188 |
+
:return: transformed feature map
|
189 |
+
'''
|
190 |
+
output = self.conv(input)
|
191 |
+
return output
|
192 |
+
|
193 |
+
class CDilated(nn.Module):
|
194 |
+
'''
|
195 |
+
This class defines the dilated convolution.
|
196 |
+
'''
|
197 |
+
def __init__(self, nIn, nOut, kSize, stride=1, d=1):
|
198 |
+
'''
|
199 |
+
:param nIn: number of input channels
|
200 |
+
:param nOut: number of output channels
|
201 |
+
:param kSize: kernel size
|
202 |
+
:param stride: optional stride rate for down-sampling
|
203 |
+
:param d: optional dilation rate
|
204 |
+
'''
|
205 |
+
super().__init__()
|
206 |
+
padding = int((kSize - 1)/2) * d
|
207 |
+
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False, dilation=d)
|
208 |
+
|
209 |
+
def forward(self, input):
|
210 |
+
'''
|
211 |
+
:param input: input feature map
|
212 |
+
:return: transformed feature map
|
213 |
+
'''
|
214 |
+
output = self.conv(input)
|
215 |
+
return output
|
216 |
+
|
217 |
+
class DownSamplerB(nn.Module):
|
218 |
+
def __init__(self, nIn, nOut):
|
219 |
+
super().__init__()
|
220 |
+
n = int(nOut/5)
|
221 |
+
n1 = nOut - 4*n
|
222 |
+
self.c1 = C(nIn, n, 3, 2)
|
223 |
+
self.d1 = CDilated(n, n1, 3, 1, 1)
|
224 |
+
self.d2 = CDilated(n, n, 3, 1, 2)
|
225 |
+
self.d4 = CDilated(n, n, 3, 1, 4)
|
226 |
+
self.d8 = CDilated(n, n, 3, 1, 8)
|
227 |
+
self.d16 = CDilated(n, n, 3, 1, 16)
|
228 |
+
self.bn = nn.BatchNorm2d(nOut, eps=1e-3)
|
229 |
+
self.act = nn.PReLU(nOut)
|
230 |
+
|
231 |
+
def forward(self, input):
|
232 |
+
output1 = self.c1(input)
|
233 |
+
d1 = self.d1(output1)
|
234 |
+
d2 = self.d2(output1)
|
235 |
+
d4 = self.d4(output1)
|
236 |
+
d8 = self.d8(output1)
|
237 |
+
d16 = self.d16(output1)
|
238 |
+
|
239 |
+
add1 = d2
|
240 |
+
add2 = add1 + d4
|
241 |
+
add3 = add2 + d8
|
242 |
+
add4 = add3 + d16
|
243 |
+
|
244 |
+
combine = torch.cat([d1, add1, add2, add3, add4],1)
|
245 |
+
#combine_in_out = input + combine
|
246 |
+
output = self.bn(combine)
|
247 |
+
output = self.act(output)
|
248 |
+
return output
|
249 |
+
class BR(nn.Module):
|
250 |
+
'''
|
251 |
+
This class groups the batch normalization and PReLU activation
|
252 |
+
'''
|
253 |
+
def __init__(self, nOut):
|
254 |
+
'''
|
255 |
+
:param nOut: output feature maps
|
256 |
+
'''
|
257 |
+
super().__init__()
|
258 |
+
self.nOut=nOut
|
259 |
+
self.bn = nn.BatchNorm2d(nOut, eps=1e-03)
|
260 |
+
self.act = nn.PReLU(nOut)
|
261 |
+
|
262 |
+
def forward(self, input):
|
263 |
+
'''
|
264 |
+
:param input: input feature map
|
265 |
+
:return: normalized and thresholded feature map
|
266 |
+
'''
|
267 |
+
# print("bf bn :",input.size(),self.nOut)
|
268 |
+
output = self.bn(input)
|
269 |
+
# print("after bn :",output.size())
|
270 |
+
output = self.act(output)
|
271 |
+
# print("after act :",output.size())
|
272 |
+
return output
|
273 |
+
class DilatedParllelResidualBlockB(nn.Module):
|
274 |
+
'''
|
275 |
+
This class defines the ESP block, which is based on the following principle
|
276 |
+
Reduce ---> Split ---> Transform --> Merge
|
277 |
+
'''
|
278 |
+
def __init__(self, nIn, nOut, add=True):
|
279 |
+
'''
|
280 |
+
:param nIn: number of input channels
|
281 |
+
:param nOut: number of output channels
|
282 |
+
:param add: if true, add a residual connection through identity operation. You can use projection too as
|
283 |
+
in ResNet paper, but we avoid to use it if the dimensions are not the same because we do not want to
|
284 |
+
increase the module complexity
|
285 |
+
'''
|
286 |
+
super().__init__()
|
287 |
+
n = max(int(nOut/5),1)
|
288 |
+
n1 = max(nOut - 4*n,1)
|
289 |
+
# print(nIn,n,n1,"--")
|
290 |
+
self.c1 = C(nIn, n, 1, 1)
|
291 |
+
self.d1 = CDilated(n, n1, 3, 1, 1) # dilation rate of 2^0
|
292 |
+
self.d2 = CDilated(n, n, 3, 1, 2) # dilation rate of 2^1
|
293 |
+
self.d4 = CDilated(n, n, 3, 1, 4) # dilation rate of 2^2
|
294 |
+
self.d8 = CDilated(n, n, 3, 1, 8) # dilation rate of 2^3
|
295 |
+
self.d16 = CDilated(n, n, 3, 1, 16) # dilation rate of 2^4
|
296 |
+
# print("nOut bf :",nOut)
|
297 |
+
self.bn = BR(nOut)
|
298 |
+
# print("nOut at :",self.bn.size())
|
299 |
+
self.add = add
|
300 |
+
|
301 |
+
def forward(self, input):
|
302 |
+
'''
|
303 |
+
:param input: input feature map
|
304 |
+
:return: transformed feature map
|
305 |
+
'''
|
306 |
+
# reduce
|
307 |
+
output1 = self.c1(input)
|
308 |
+
# split and transform
|
309 |
+
d1 = self.d1(output1)
|
310 |
+
d2 = self.d2(output1)
|
311 |
+
d4 = self.d4(output1)
|
312 |
+
d8 = self.d8(output1)
|
313 |
+
d16 = self.d16(output1)
|
314 |
+
|
315 |
+
|
316 |
+
# heirarchical fusion for de-gridding
|
317 |
+
add1 = d2
|
318 |
+
add2 = add1 + d4
|
319 |
+
add3 = add2 + d8
|
320 |
+
add4 = add3 + d16
|
321 |
+
# print(d1.size(),add1.size(),add2.size(),add3.size(),add4.size())
|
322 |
+
|
323 |
+
#merge
|
324 |
+
combine = torch.cat([d1, add1, add2, add3, add4], 1)
|
325 |
+
# print("combine :",combine.size())
|
326 |
+
# if residual version
|
327 |
+
if self.add:
|
328 |
+
# print("add :",combine.size())
|
329 |
+
combine = input + combine
|
330 |
+
# print(combine.size(),"-----------------")
|
331 |
+
output = self.bn(combine)
|
332 |
+
return output
|
333 |
+
|
334 |
+
class InputProjectionA(nn.Module):
|
335 |
+
'''
|
336 |
+
This class projects the input image to the same spatial dimensions as the feature map.
|
337 |
+
For example, if the input image is 512 x512 x3 and spatial dimensions of feature map size are 56x56xF, then
|
338 |
+
this class will generate an output of 56x56x3
|
339 |
+
'''
|
340 |
+
def __init__(self, samplingTimes):
|
341 |
+
'''
|
342 |
+
:param samplingTimes: The rate at which you want to down-sample the image
|
343 |
+
'''
|
344 |
+
super().__init__()
|
345 |
+
self.pool = nn.ModuleList()
|
346 |
+
for i in range(0, samplingTimes):
|
347 |
+
#pyramid-based approach for down-sampling
|
348 |
+
self.pool.append(nn.AvgPool2d(3, stride=2, padding=1))
|
349 |
+
|
350 |
+
def forward(self, input):
|
351 |
+
'''
|
352 |
+
:param input: Input RGB Image
|
353 |
+
:return: down-sampled image (pyramid-based approach)
|
354 |
+
'''
|
355 |
+
for pool in self.pool:
|
356 |
+
input = pool(input)
|
357 |
+
return input
|
358 |
+
|
359 |
+
class ESPNet_Encoder(nn.Module):
|
360 |
+
'''
|
361 |
+
This class defines the ESPNet-C network in the paper
|
362 |
+
'''
|
363 |
+
def __init__(self, p=5, q=3):
|
364 |
+
# def __init__(self, classes=20, p=1, q=1):
|
365 |
+
'''
|
366 |
+
:param classes: number of classes in the dataset. Default is 20 for the cityscapes
|
367 |
+
:param p: depth multiplier
|
368 |
+
:param q: depth multiplier
|
369 |
+
'''
|
370 |
+
super().__init__()
|
371 |
+
self.level1 = CBR(3, 16, 3, 2)
|
372 |
+
self.sample1 = InputProjectionA(1)
|
373 |
+
self.sample2 = InputProjectionA(2)
|
374 |
+
|
375 |
+
self.b1 = CBR(16 + 3,19,3)
|
376 |
+
self.level2_0 = DownSamplerB(16 +3, 64)
|
377 |
+
|
378 |
+
self.level2 = nn.ModuleList()
|
379 |
+
for i in range(0, p):
|
380 |
+
self.level2.append(DilatedParllelResidualBlockB(64 , 64))
|
381 |
+
self.b2 = CBR(128 + 3,131,3)
|
382 |
+
|
383 |
+
self.level3_0 = DownSamplerB(128 + 3, 128)
|
384 |
+
self.level3 = nn.ModuleList()
|
385 |
+
for i in range(0, q):
|
386 |
+
self.level3.append(DilatedParllelResidualBlockB(128 , 128))
|
387 |
+
# self.mixstyle = MixStyle2(p=0.5, alpha=0.1)
|
388 |
+
self.b3 = CBR(256,32,3)
|
389 |
+
self.sa = PAM_Module(32)
|
390 |
+
self.sc = CAM_Module(32)
|
391 |
+
self.conv_sa = CBR(32,32,3)
|
392 |
+
self.conv_sc = CBR(32,32,3)
|
393 |
+
self.classifier = CBR(32, 32, 1, 1)
|
394 |
+
|
395 |
+
def forward(self, input):
|
396 |
+
'''
|
397 |
+
:param input: Receives the input RGB image
|
398 |
+
:return: the transformed feature map with spatial dimensions 1/8th of the input image
|
399 |
+
'''
|
400 |
+
output0 = self.level1(input)
|
401 |
+
inp1 = self.sample1(input)
|
402 |
+
inp2 = self.sample2(input)
|
403 |
+
|
404 |
+
output0_cat = self.b1(torch.cat([output0, inp1], 1))
|
405 |
+
output1_0 = self.level2_0(output0_cat) # down-sampled
|
406 |
+
|
407 |
+
for i, layer in enumerate(self.level2):
|
408 |
+
if i==0:
|
409 |
+
output1 = layer(output1_0)
|
410 |
+
else:
|
411 |
+
output1 = layer(output1)
|
412 |
+
|
413 |
+
output1_cat = self.b2(torch.cat([output1, output1_0, inp2], 1))
|
414 |
+
output2_0 = self.level3_0(output1_cat) # down-sampled
|
415 |
+
for i, layer in enumerate(self.level3):
|
416 |
+
if i==0:
|
417 |
+
output2 = layer(output2_0)
|
418 |
+
else:
|
419 |
+
output2 = layer(output2)
|
420 |
+
cat_=torch.cat([output2_0, output2], 1)
|
421 |
+
|
422 |
+
output2_cat = self.b3(cat_)
|
423 |
+
out_sa=self.sa(output2_cat)
|
424 |
+
out_sa=self.conv_sa(out_sa)
|
425 |
+
out_sc=self.sc(output2_cat)
|
426 |
+
out_sc=self.conv_sc(out_sc)
|
427 |
+
out_s=out_sa+out_sc
|
428 |
+
classifier = self.classifier(out_s)
|
429 |
+
|
430 |
+
return classifier
|
431 |
+
|
432 |
+
class TwinLiteNet(nn.Module):
|
433 |
+
'''
|
434 |
+
This class defines the ESPNet network
|
435 |
+
'''
|
436 |
+
|
437 |
+
def __init__(self, p=2, q=3, ):
|
438 |
+
|
439 |
+
super().__init__()
|
440 |
+
self.encoder = ESPNet_Encoder(p, q)
|
441 |
+
|
442 |
+
self.up_1_1 = UPx2(32,16)
|
443 |
+
self.up_2_1 = UPx2(16,8)
|
444 |
+
|
445 |
+
self.up_1_2 = UPx2(32,16)
|
446 |
+
self.up_2_2 = UPx2(16,8)
|
447 |
+
|
448 |
+
self.classifier_1 = UPx2(8,2)
|
449 |
+
self.classifier_2 = UPx2(8,2)
|
450 |
+
|
451 |
+
|
452 |
+
|
453 |
+
def forward(self, input):
|
454 |
+
|
455 |
+
x=self.encoder(input)
|
456 |
+
x1=self.up_1_1(x)
|
457 |
+
x1=self.up_2_1(x1)
|
458 |
+
classifier1=self.classifier_1(x1)
|
459 |
+
|
460 |
+
|
461 |
+
|
462 |
+
x2=self.up_1_2(x)
|
463 |
+
x2=self.up_2_2(x2)
|
464 |
+
classifier2=self.classifier_2(x2)
|
465 |
+
|
466 |
+
return (classifier1,classifier2)
|
467 |
+
|
468 |
+
|