Tsetlin-Chat / app.py
bobsbimal58's picture
Update app.py
6c064fd
#!/usr/bin/env python3
from dotenv import load_dotenv
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.llms import GPT4All, LlamaCpp
import chromadb
import os
import argparse
import time
import streamlit as st
from htmlTemplates import css, bot_template, user_template
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
import langchain
from pydantic.v1 import BaseSettings
langchain.verbose = False
if not load_dotenv():
print("Could not load .env file or it is empty. Please check if it exists and is readable.")
exit(1)
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME")
persist_directory = os.environ.get('PERSIST_DIRECTORY')
model_type = os.environ.get('MODEL_TYPE')
model_path = os.environ.get('MODEL_PATH')
model_n_ctx = os.environ.get('MODEL_N_CTX')
model_n_batch = int(os.environ.get('MODEL_N_BATCH',8))
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
from constants import CHROMA_SETTINGS
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def get_conversation_chain(llm, retriever):
#llm = ChatOpenAI()
#llm= GPT4All(model=model_path, max_tokens=model_n_ctx, backend='gptj', n_batch=model_n_batch, callbacks=callbacks, verbose=False)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory
)
return conversation_chain
def main():
# Parse the command line arguments
args = parse_arguments()
st.set_page_config(page_title="Chat with multiple PDFs",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Tsetlin LLM Powered Chatbot")
user_question = st.text_input("Ask a question about Tsetlin Machine:")
if user_question:
handle_userinput(user_question)
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
chroma_client = chromadb.PersistentClient(settings=CHROMA_SETTINGS , path=persist_directory)
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, client=chroma_client)
retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
# activate/deactivate the streaming StdOut callback for LLMs
callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
# Prepare the LLM
#what is match equivalent in python 3.9?
llm = GPT4All(model=model_path, max_tokens=model_n_ctx, backend='gptj', n_batch=model_n_batch, callbacks=callbacks, verbose=False)
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
# Interactive questions and answers
st.session_state.conversation = get_conversation_chain(llm, retriever)
def parse_arguments():
parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
'using the power of LLMs.')
parser.add_argument("--hide-source", "-S", action='store_true',
help='Use this flag to disable printing of source documents used for answers.')
parser.add_argument("--mute-stream", "-M",
action='store_true',
help='Use this flag to disable the streaming StdOut callback for LLMs.')
return parser.parse_args()
if __name__ == "__main__":
main()