bohmian commited on
Commit
f9a20e0
·
1 Parent(s): d83e630

Delete app.py.bak

Browse files
Files changed (1) hide show
  1. app.py.bak +0 -130
app.py.bak DELETED
@@ -1,130 +0,0 @@
1
- import gradio as gr
2
- import yfinance as yf
3
- from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices
4
- from pypfopt import EfficientFrontier
5
- from pypfopt import risk_models
6
- from pypfopt import expected_returns
7
- from pypfopt import plotting
8
- import copy
9
- import numpy as np
10
- import pandas as pd
11
- import plotly.express as px
12
- import matplotlib.pyplot as plt
13
- from datetime import datetime
14
- import datetime
15
-
16
- def plot_cum_returns(data, title):
17
- daily_cum_returns = 1 + data.dropna().pct_change()
18
- daily_cum_returns = daily_cum_returns.cumprod()*100
19
- fig = px.line(daily_cum_returns, title=title)
20
- return fig
21
-
22
- def plot_efficient_frontier_and_max_sharpe(mu, S):
23
- # Optimize portfolio for max Sharpe ratio and plot it out with efficient frontier curve
24
- ef = EfficientFrontier(mu, S)
25
- fig, ax = plt.subplots(figsize=(6,4))
26
- ef_max_sharpe = copy.deepcopy(ef)
27
- plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False)
28
- # Find the max sharpe portfolio
29
- ef_max_sharpe.max_sharpe(risk_free_rate=0.02)
30
- ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance()
31
- ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe")
32
- # Generate random portfolios with random weights
33
- n_samples = 1000
34
- w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
35
- rets = w.dot(ef.expected_returns)
36
- stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
37
- sharpes = rets / stds
38
- ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r")
39
- # Output
40
- ax.legend()
41
- return fig
42
-
43
- def output_results(start_date, end_date, tickers_string):
44
- tickers = tickers_string.split(',')
45
-
46
- # Get Stock Prices
47
- stocks_df = yf.download(tickers, start=start_date, end=end_date)['Adj Close']
48
-
49
- # Plot Individual Stock Prices
50
- fig_indiv_prices = px.line(stocks_df, title='Price of Individual Stocks')
51
-
52
- # Plot Individual Cumulative Returns
53
- fig_cum_returns = plot_cum_returns(stocks_df, 'Cumulative Returns of Individual Stocks Starting with $100')
54
-
55
- # Calculatge and Plot Correlation Matrix between Stocks
56
- corr_df = stocks_df.corr().round(2)
57
- fig_corr = px.imshow(corr_df, text_auto=True, title = 'Correlation between Stocks')
58
-
59
- # Calculate expected returns and sample covariance matrix for portfolio optimization later
60
- mu = expected_returns.mean_historical_return(stocks_df)
61
- S = risk_models.sample_cov(stocks_df)
62
-
63
- # Plot efficient frontier curve
64
- fig_efficient_frontier = plot_efficient_frontier_and_max_sharpe(mu, S)
65
-
66
- # Get optimized weights
67
- ef = EfficientFrontier(mu, S)
68
- ef.max_sharpe(risk_free_rate=0.02)
69
- weights = ef.clean_weights()
70
- expected_annual_return, annual_volatility, sharpe_ratio = ef.portfolio_performance()
71
-
72
- expected_annual_return, annual_volatility, sharpe_ratio = '{}%'.format((expected_annual_return*100).round(2)), \
73
- '{}%'.format((annual_volatility*100).round(2)), \
74
- '{}%'.format((sharpe_ratio*100).round(2))
75
-
76
- weights_df = pd.DataFrame.from_dict(weights, orient = 'index')
77
- weights_df = weights_df.reset_index()
78
- weights_df.columns = ['Tickers', 'Weights']
79
-
80
- # Calculate returns of portfolio with optimized weights
81
- stocks_df['Optimized Portfolio'] = 0
82
- for ticker, weight in weights.items():
83
- stocks_df['Optimized Portfolio'] += stocks_df[ticker]*weight
84
-
85
- # Plot Cumulative Returns of Optimized Portfolio
86
- fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with $100')
87
-
88
- return fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
89
- expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns
90
-
91
-
92
- with gr.Blocks() as app:
93
- with gr.Row():
94
- gr.HTML("<h1>Bohmian's Stock Portfolio Optimizer</h1>")
95
-
96
- with gr.Row():
97
- start_date = gr.Textbox("2013-01-01", label="Start Date")
98
- end_date = gr.Textbox(datetime.datetime.now().date(), label="End Date")
99
-
100
- with gr.Row():
101
- tickers_string = gr.Textbox("MA,META,V,AMZN,JPM,BA",
102
- label='Enter all stock tickers to be included in portfolio separated \
103
- by commas WITHOUT spaces, e.g. "MA,META,V,AMZN,JPM,BA"')
104
- btn = gr.Button("Get Optimized Portfolio")
105
-
106
- with gr.Row():
107
- gr.HTML("<h3>Optimizied Portfolio Metrics</h3>")
108
-
109
- with gr.Row():
110
- expected_annual_return = gr.Text(label="Expected Annual Return")
111
- annual_volatility = gr.Text(label="Annual Volatility")
112
- sharpe_ratio = gr.Text(label="Sharpe Ratio")
113
-
114
- with gr.Row():
115
- fig_cum_returns_optimized = gr.Plot(label="Cumulative Returns of Optimized Portfolio (Starting Price of $100)")
116
- weights_df = gr.DataFrame(label="Optimized Weights of Each Ticker")
117
-
118
- with gr.Row():
119
- fig_efficient_frontier = gr.Plot(label="Efficient Frontier")
120
- fig_corr = gr.Plot(label="Correlation between Stocks")
121
-
122
- with gr.Row():
123
- fig_indiv_prices = gr.Plot(label="Price of Individual Stocks")
124
- fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with $100")
125
-
126
- btn.click(fn=output_results, inputs=[start_date, end_date, tickers_string],
127
- outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
128
- expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])
129
-
130
- app.launch()