Anonymous941 commited on
Commit
61f9504
·
1 Parent(s): bfbf5ad

Update app.py and pipeline.py

Browse files
Files changed (2) hide show
  1. app.py +3 -3
  2. pipeline.py +0 -39
app.py CHANGED
@@ -1,9 +1,6 @@
1
  import gradio as gr
2
  from datasets import load_dataset, Image
3
 
4
- dataset = load_dataset("botmaster/mother-2-battle-sprites", split="train")
5
- gr.Interface.load("models/templates/text-to-image").launch()
6
-
7
  import torch
8
  import nltk
9
  import io
@@ -43,3 +40,6 @@ class PreTrainedPipeline():
43
  img = output[0]
44
  img = (img + 1) / 2.0
45
  img = transforms.ToPILImage()(img)
 
 
 
 
1
  import gradio as gr
2
  from datasets import load_dataset, Image
3
 
 
 
 
4
  import torch
5
  import nltk
6
  import io
 
40
  img = output[0]
41
  img = (img + 1) / 2.0
42
  img = transforms.ToPILImage()(img)
43
+
44
+ dataset = load_dataset("botmaster/mother-2-battle-sprites", split="train")
45
+ gr.Interface.load("models/templates/text-to-image").launch()
pipeline.py CHANGED
@@ -1,39 +0,0 @@
1
- import torch
2
- import nltk
3
- import io
4
- import base64
5
- import shutil
6
- from torchvision import transforms
7
-
8
- from pytorch_pretrained_biggan import BigGAN, one_hot_from_names, truncated_noise_sample
9
-
10
- class PreTrainedPipeline():
11
- def __init__(self, path=""):
12
- """
13
- Initialize model
14
- """
15
- nltk.download('wordnet')
16
- self.model = BigGAN.from_pretrained(path)
17
- self.truncation = 0.1
18
-
19
- def __call__(self, inputs: str):
20
- """
21
- Args:
22
- inputs (:obj:`str`):
23
- a string containing some text
24
- Return:
25
- A :obj:`PIL.Image` with the raw image representation as PIL.
26
- """
27
- class_vector = one_hot_from_names([inputs], batch_size=1)
28
- if type(class_vector) == type(None):
29
- raise ValueError("Input is not in ImageNet")
30
- noise_vector = truncated_noise_sample(truncation=self.truncation, batch_size=1)
31
- noise_vector = torch.from_numpy(noise_vector)
32
- class_vector = torch.from_numpy(class_vector)
33
- with torch.no_grad():
34
- output = self.model(noise_vector, class_vector, self.truncation)
35
-
36
- # Scale image
37
- img = output[0]
38
- img = (img + 1) / 2.0
39
- img = transforms.ToPILImage()(img)