Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- app.py +110 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
hf_token = os.environ.get("HF_TOKEN")
|
4 |
+
import spaces
|
5 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
6 |
+
import torch
|
7 |
+
import time
|
8 |
+
|
9 |
+
class Dummy():
|
10 |
+
pass
|
11 |
+
|
12 |
+
# Load pipeline
|
13 |
+
default_negative_prompt= "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
|
14 |
+
model_id = "briaai/BRIA-2.2"
|
15 |
+
scheduler = EulerAncestralDiscreteScheduler(
|
16 |
+
beta_start=0.00085,
|
17 |
+
beta_end=0.012,
|
18 |
+
beta_schedule="scaled_linear",
|
19 |
+
num_train_timesteps=1000,
|
20 |
+
steps_offset=1
|
21 |
+
)
|
22 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float16,scheduler=scheduler).to("cuda")
|
23 |
+
|
24 |
+
print("Optimizing BRIA-2.2 - this could take a while")
|
25 |
+
t=time.time()
|
26 |
+
pipe.unet = torch.compile(
|
27 |
+
pipe.unet, mode="reduce-overhead", fullgraph=True # 600 secs compilation
|
28 |
+
)
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = pipe(
|
31 |
+
prompt="an apple",
|
32 |
+
num_inference_steps=30,
|
33 |
+
)
|
34 |
+
|
35 |
+
# This will avoid future compilations on different shapes
|
36 |
+
unet_compiled = torch._dynamo.run(pipe.unet)
|
37 |
+
unet_compiled.config=pipe.unet.config
|
38 |
+
unet_compiled.add_embedding = Dummy()
|
39 |
+
unet_compiled.add_embedding.linear_1 = Dummy()
|
40 |
+
unet_compiled.add_embedding.linear_1.in_features = pipe.unet.add_embedding.linear_1.in_features
|
41 |
+
pipe.unet = unet_compiled
|
42 |
+
|
43 |
+
print(f"Optimizing finished successfully after {time.time()-t} secs")
|
44 |
+
|
45 |
+
@spaces.GPU(enable_queue=True)
|
46 |
+
def infer(prompt):
|
47 |
+
print(f"""
|
48 |
+
—/n
|
49 |
+
{prompt}
|
50 |
+
""")
|
51 |
+
|
52 |
+
# generator = torch.Generator("cuda").manual_seed(555)
|
53 |
+
t=time.time()
|
54 |
+
image = pipe(prompt,num_inference_steps=30, negative_prompt=default_negative_prompt).images[0]
|
55 |
+
print(f'gen time is {time.time()-t} secs')
|
56 |
+
|
57 |
+
# Future
|
58 |
+
# Add amound of steps
|
59 |
+
# if nsfw:
|
60 |
+
# raise gr.Error("Generated image is NSFW")
|
61 |
+
|
62 |
+
return image
|
63 |
+
|
64 |
+
css = """
|
65 |
+
#col-container{
|
66 |
+
margin: 0 auto;
|
67 |
+
max-width: 580px;
|
68 |
+
}
|
69 |
+
"""
|
70 |
+
with gr.Blocks(css=css) as demo:
|
71 |
+
with gr.Column(elem_id="col-container"):
|
72 |
+
gr.HTML("""
|
73 |
+
<h2 style="text-align: center;">
|
74 |
+
BRIA-2.2
|
75 |
+
</h2>
|
76 |
+
""")
|
77 |
+
with gr.Group():
|
78 |
+
with gr.Column():
|
79 |
+
prompt_in = gr.Textbox(label="Prompt", value="A red colored sports car")
|
80 |
+
submit_btn = gr.Button("Generate")
|
81 |
+
result = gr.Image(label="BRIA-2.2 Result")
|
82 |
+
|
83 |
+
# gr.Examples(
|
84 |
+
# examples = [
|
85 |
+
# "Dragon, digital art, by Greg Rutkowski",
|
86 |
+
# "Armored knight holding sword",
|
87 |
+
# "A flat roof villa near a river with black walls and huge windows",
|
88 |
+
# "A calm and peaceful office",
|
89 |
+
# "Pirate guinea pig"
|
90 |
+
# ],
|
91 |
+
# fn = infer,
|
92 |
+
# inputs = [
|
93 |
+
# prompt_in
|
94 |
+
# ],
|
95 |
+
# outputs = [
|
96 |
+
# result
|
97 |
+
# ]
|
98 |
+
# )
|
99 |
+
|
100 |
+
submit_btn.click(
|
101 |
+
fn = infer,
|
102 |
+
inputs = [
|
103 |
+
prompt_in
|
104 |
+
],
|
105 |
+
outputs = [
|
106 |
+
result
|
107 |
+
]
|
108 |
+
)
|
109 |
+
|
110 |
+
demo.queue().launch(show_api=False)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
diffusers
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
accelerate
|
6 |
+
spaces
|
7 |
+
gradio
|