BRIA-2.2-HD / app.py
mokady's picture
Update app.py
3b994bf verified
import gradio as gr
import os
hf_token = os.environ.get("HF_TOKEN")
import spaces
from diffusers import DiffusionPipeline, UNet2DConditionModel, EulerAncestralDiscreteScheduler, AutoencoderKL
import torch
import time
class Dummy():
pass
resolutions = ["1536 1536","1728 1280","1856 1280","1920 1088", "1088 1920","1280 1856","1280 1728" ]
# Load pipeline
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained("briaai/BRIA-2.2-HD", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained("briaai/BRIA-2.2", torch_dtype=torch.float16, unet=unet, vae=vae)
assert type(pipe.scheduler) == EulerAncestralDiscreteScheduler
pipe.to('cuda')
del unet
del vae
pipe.force_zeros_for_empty_prompt = False
negative_prompt= "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
# print("Optimizing BRIA 2.2 HD - this could take a while")
# t=time.time()
# pipe.unet = torch.compile(
# pipe.unet, mode="reduce-overhead", fullgraph=True # 600 secs compilation
# )
# with torch.no_grad():
# outputs = pipe(
# prompt="an apple",
# num_inference_steps=30,
# width=1536,
# height=1536,
# negative_prompt=negative_prompt
# )
# # This will avoid future compilations on different shapes
# unet_compiled = torch._dynamo.run(pipe.unet)
# unet_compiled.config=pipe.unet.config
# unet_compiled.add_embedding = Dummy()
# unet_compiled.add_embedding.linear_1 = Dummy()
# unet_compiled.add_embedding.linear_1.in_features = pipe.unet.add_embedding.linear_1.in_features
# pipe.unet = unet_compiled
# print(f"Optimizing finished successfully after {time.time()-t} secs")
@spaces.GPU(enable_queue=True)
def infer(prompt,seed,resolution):
print(f"""
—/n
{prompt}
""")
# generator = torch.Generator("cuda").manual_seed(555)
t=time.time()
if seed=="-1":
generator=None
else:
try:
seed=int(seed)
generator = torch.Generator("cuda").manual_seed(seed)
except:
generator=None
w,h = resolution.split()
w,h = int(w),int(h)
image = pipe(prompt,num_inference_steps=30,generator=generator,width=w,height=h,negative_prompt=negative_prompt).images[0]
print(f'gen time is {time.time()-t} secs')
# Future
# Add amound of steps
# if nsfw:
# raise gr.Error("Generated image is NSFW")
return image
css = """
#col-container{
margin: 0 auto;
max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## BRIA 2.2 HD")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for
<a href="https://huggingface.co/briaai/BRIA-2.2-HD" target="_blank">BRIA 2.2 HD </a>.
This is a high resolution version of BRIA 2.2 text-to-image model, still trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.
</p>
''')
with gr.Group():
with gr.Column():
prompt_in = gr.Textbox(label="Prompt", value="A smiling man with wavy brown hair and a trimmed beard")
resolution = gr.Dropdown(value=resolutions[0], show_label=True, label="Resolution", choices=resolutions)
seed = gr.Textbox(label="Seed", value=-1)
submit_btn = gr.Button("Generate")
result = gr.Image(label="BRIA 2.2 HD Result")
# gr.Examples(
# examples = [
# "Dragon, digital art, by Greg Rutkowski",
# "Armored knight holding sword",
# "A flat roof villa near a river with black walls and huge windows",
# "A calm and peaceful office",
# "Pirate guinea pig"
# ],
# fn = infer,
# inputs = [
# prompt_in
# ],
# outputs = [
# result
# ]
# )
submit_btn.click(
fn = infer,
inputs = [
prompt_in,
seed,
resolution
],
outputs = [
result
]
)
demo.queue().launch(show_api=False)