yonishafir commited on
Commit
5ced797
·
verified ·
1 Parent(s): 61503cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -75
app.py CHANGED
@@ -126,31 +126,6 @@ def calc_emb_cropped(image, app, min_bbox_ratio=0.2):
126
 
127
  return cropped_face_image
128
 
129
- def print_tree(root_dir, prefix=""):
130
- """
131
- Recursively prints the directory structure starting from `root_dir`.
132
-
133
- Args:
134
- root_dir (str): Path to the root directory.
135
- prefix (str): Prefix for formatting the tree structure.
136
- """
137
- # List all files and directories in the current folder
138
- items = os.listdir(root_dir)
139
- items.sort() # Sort for consistent output
140
-
141
- for i, item in enumerate(items):
142
- path = os.path.join(root_dir, item)
143
- is_last = (i == len(items) - 1)
144
-
145
- # Print item name with tree branch
146
- print(f"{prefix}{'└── ' if is_last else '├── '}{item}")
147
-
148
- # If the item is a directory, recurse into it
149
- if os.path.isdir(path):
150
- print_tree(path, prefix + (" " if is_last else "│ "))
151
-
152
-
153
-
154
  def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
155
  if w_bilateral:
156
  image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
@@ -164,42 +139,14 @@ def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
164
  image = Image.fromarray(image)
165
  return image
166
 
 
 
 
 
167
 
168
  default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
169
 
170
- # Global variable to track the currently loaded LoRA
171
- CURRENT_LORA_NAME = None
172
-
173
- # Load face detection and recognition package
174
- # app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
175
-
176
-
177
- # # Define your repository, target directory, and local directory
178
- # repo_id = "briaai/ID_preservation_2.3"
179
- # target_dir = "models_aura/" # The directory you want to download
180
- # local_dir = "./checkpoints" # Local directory to save files
181
-
182
- # # Initialize the API
183
- # api = HfApi()
184
- # # List all files in the repository
185
- # files = api.list_repo_files(repo_id=repo_id, repo_type="model") # Use repo_type="space" for Spaces
186
-
187
- # # Filter files that are in the target directory
188
- # files_in_dir = [file for file in files if file.startswith(target_dir)]
189
- # # Download each file in the target directory
190
- # for file in files_in_dir:
191
- # local_path = os.path.join(local_dir, file)
192
- # os.makedirs(os.path.dirname(local_path), exist_ok=True) # Ensure local directories exist
193
- # print(f"Downloading: {file}")
194
- # hf_hub_download(repo_id=repo_id, filename=file, local_dir=os.path.dirname(local_path))
195
-
196
-
197
- # # Local directory where files were downloaded
198
- # local_dir = "./checkpoints/models_aura"
199
-
200
- # print(f"Folder structure of '{local_dir}':")
201
- # print_tree(local_dir)
202
-
203
  snapshot_download(
204
  "fal/AuraFace-v1",
205
  local_dir="models/auraface",
@@ -211,12 +158,10 @@ app = FaceAnalysis(
211
  root=".",
212
  )
213
 
214
- # app = FaceAnalysis(name='auraface', root='./checkpoints/models_aura/', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
215
  app.prepare(ctx_id=0, det_size=(640, 640))
216
 
217
 
218
  # download checkpoints
219
-
220
  hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/config.json", local_dir="./checkpoints")
221
  hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
222
  hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="ip-adapter.bin", local_dir="./checkpoints")
@@ -229,7 +174,6 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
229
  # ckpts paths
230
  face_adapter = f"./checkpoints/ip-adapter.bin"
231
  controlnet_path = f"./checkpoints/controlnet"
232
- # lora_base_path = "./checkpoints/LoRAs"
233
  base_model_path = f'briaai/BRIA-2.3'
234
  resolution = 1024
235
 
@@ -261,21 +205,7 @@ pipe.load_ip_adapter_instantid(face_adapter)
261
 
262
  clip_embeds=None
263
 
264
- # Loras_dict = {
265
- # "":"",
266
- # "Vangogh_Vanilla": "bold, dramatic brush strokes, vibrant colors, swirling patterns, intense, emotionally charged paintings of",
267
- # "Avatar_internlm": "2d anime sketch avatar of",
268
- # "Storyboards": "Illustration style for storyboarding.",
269
- # "3D_illustration": "3D object illustration, abstract.",
270
- # "Characters": "gaming vector Art."
271
- # }
272
 
273
- # lora_names = Loras_dict.keys()
274
-
275
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
276
- if randomize_seed:
277
- seed = random.randint(0, 99999999)
278
- return seed
279
 
280
 
281
  @spaces.GPU
 
126
 
127
  return cropped_face_image
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
130
  if w_bilateral:
131
  image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
 
139
  image = Image.fromarray(image)
140
  return image
141
 
142
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
143
+ if randomize_seed:
144
+ seed = random.randint(0, 99999999)
145
+ return seed
146
 
147
  default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
148
 
149
+ # Download face encoder
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
  snapshot_download(
151
  "fal/AuraFace-v1",
152
  local_dir="models/auraface",
 
158
  root=".",
159
  )
160
 
 
161
  app.prepare(ctx_id=0, det_size=(640, 640))
162
 
163
 
164
  # download checkpoints
 
165
  hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/config.json", local_dir="./checkpoints")
166
  hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
167
  hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="ip-adapter.bin", local_dir="./checkpoints")
 
174
  # ckpts paths
175
  face_adapter = f"./checkpoints/ip-adapter.bin"
176
  controlnet_path = f"./checkpoints/controlnet"
 
177
  base_model_path = f'briaai/BRIA-2.3'
178
  resolution = 1024
179
 
 
205
 
206
  clip_embeds=None
207
 
 
 
 
 
 
 
 
 
208
 
 
 
 
 
 
 
209
 
210
 
211
  @spaces.GPU