Spaces:
Running
on
Zero
Running
on
Zero
yonishafir
commited on
Create pipeline_stable_diffusion_xl_instantid.py
Browse files
pipeline_stable_diffusion_xl_instantid.py
ADDED
@@ -0,0 +1,840 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The InstantX Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
import numpy as np
|
22 |
+
import PIL.Image
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
|
26 |
+
from diffusers.image_processor import PipelineImageInput
|
27 |
+
|
28 |
+
from diffusers.models import ControlNetModel
|
29 |
+
|
30 |
+
from diffusers.utils import (
|
31 |
+
deprecate,
|
32 |
+
logging,
|
33 |
+
replace_example_docstring,
|
34 |
+
)
|
35 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
36 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
37 |
+
|
38 |
+
from diffusers import StableDiffusionXLControlNetPipeline
|
39 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
40 |
+
from diffusers.utils.import_utils import is_xformers_available
|
41 |
+
|
42 |
+
from ip_adapter.resampler import Resampler
|
43 |
+
from ip_adapter.utils import is_torch2_available
|
44 |
+
|
45 |
+
if is_torch2_available():
|
46 |
+
from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
|
47 |
+
else:
|
48 |
+
from ip_adapter.attention_processor import IPAttnProcessor, AttnProcessor
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
51 |
+
|
52 |
+
|
53 |
+
EXAMPLE_DOC_STRING = """
|
54 |
+
Examples:
|
55 |
+
```py
|
56 |
+
>>> # !pip install opencv-python transformers accelerate insightface
|
57 |
+
>>> import diffusers
|
58 |
+
>>> from diffusers.utils import load_image
|
59 |
+
>>> from diffusers.models import ControlNetModel
|
60 |
+
|
61 |
+
>>> import cv2
|
62 |
+
>>> import torch
|
63 |
+
>>> import numpy as np
|
64 |
+
>>> from PIL import Image
|
65 |
+
|
66 |
+
>>> from insightface.app import FaceAnalysis
|
67 |
+
>>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
|
68 |
+
|
69 |
+
>>> # download 'antelopev2' under ./models
|
70 |
+
>>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
71 |
+
>>> app.prepare(ctx_id=0, det_size=(640, 640))
|
72 |
+
|
73 |
+
>>> # download models under ./checkpoints
|
74 |
+
>>> face_adapter = f'./checkpoints/ip-adapter.bin'
|
75 |
+
>>> controlnet_path = f'./checkpoints/ControlNetModel'
|
76 |
+
|
77 |
+
>>> # load IdentityNet
|
78 |
+
>>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
79 |
+
|
80 |
+
>>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
81 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
|
82 |
+
... )
|
83 |
+
>>> pipe.cuda()
|
84 |
+
|
85 |
+
>>> # load adapter
|
86 |
+
>>> pipe.load_ip_adapter_instantid(face_adapter)
|
87 |
+
|
88 |
+
>>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
|
89 |
+
>>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
|
90 |
+
|
91 |
+
>>> # load an image
|
92 |
+
>>> image = load_image("your-example.jpg")
|
93 |
+
|
94 |
+
>>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1]
|
95 |
+
>>> face_emb = face_info['embedding']
|
96 |
+
>>> face_kps = draw_kps(face_image, face_info['kps'])
|
97 |
+
|
98 |
+
>>> pipe.set_ip_adapter_scale(0.8)
|
99 |
+
|
100 |
+
>>> # generate image
|
101 |
+
>>> image = pipe(
|
102 |
+
... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8
|
103 |
+
... ).images[0]
|
104 |
+
```
|
105 |
+
"""
|
106 |
+
|
107 |
+
def draw_kps(image_pil, kps, rad=10, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
|
108 |
+
|
109 |
+
stickwidth = 4
|
110 |
+
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
111 |
+
kps = np.array(kps)
|
112 |
+
|
113 |
+
w, h = image_pil.size
|
114 |
+
out_img = np.zeros([h, w, 3])
|
115 |
+
|
116 |
+
for i in range(len(limbSeq)):
|
117 |
+
index = limbSeq[i]
|
118 |
+
color = color_list[index[0]]
|
119 |
+
|
120 |
+
x = kps[index][:, 0]
|
121 |
+
y = kps[index][:, 1]
|
122 |
+
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
123 |
+
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
124 |
+
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
125 |
+
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
126 |
+
out_img = (out_img * 0.6).astype(np.uint8)
|
127 |
+
|
128 |
+
for idx_kp, kp in enumerate(kps):
|
129 |
+
color = color_list[idx_kp]
|
130 |
+
x, y = kp
|
131 |
+
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
132 |
+
|
133 |
+
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
|
134 |
+
return out_img_pil
|
135 |
+
|
136 |
+
class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
137 |
+
|
138 |
+
def cuda(self, dtype=torch.float16, use_xformers=False):
|
139 |
+
self.to('cuda', dtype)
|
140 |
+
|
141 |
+
if hasattr(self, 'image_proj_model'):
|
142 |
+
self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
|
143 |
+
|
144 |
+
if use_xformers:
|
145 |
+
if is_xformers_available():
|
146 |
+
import xformers
|
147 |
+
from packaging import version
|
148 |
+
|
149 |
+
xformers_version = version.parse(xformers.__version__)
|
150 |
+
if xformers_version == version.parse("0.0.16"):
|
151 |
+
logger.warn(
|
152 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
153 |
+
)
|
154 |
+
self.enable_xformers_memory_efficient_attention()
|
155 |
+
else:
|
156 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
157 |
+
|
158 |
+
def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=1):
|
159 |
+
if type(model_ckpt)==list:
|
160 |
+
model_ckpt_instant=model_ckpt[0]
|
161 |
+
else:
|
162 |
+
model_ckpt_instant = model_ckpt
|
163 |
+
|
164 |
+
self.set_image_proj_model(model_ckpt_instant, image_emb_dim, num_tokens)
|
165 |
+
|
166 |
+
if type(model_ckpt)==list:
|
167 |
+
dir_models = os.path.dirname(model_ckpt[0])
|
168 |
+
weight_name = [os.path.basename(m) for m in model_ckpt]
|
169 |
+
else:
|
170 |
+
dir_models = os.path.dirname(model_ckpt)
|
171 |
+
weight_name = os.path.basename(model_ckpt)
|
172 |
+
|
173 |
+
if self.use_native_ip_adapter:
|
174 |
+
self.load_ip_adapter(
|
175 |
+
dir_models,
|
176 |
+
# subfolder="sdxl_models",
|
177 |
+
subfolder=None,
|
178 |
+
# weight_name=["ip-adapter-instant-id.bin", "ip-adapter-plus_sdxl_vit-h.bin"],
|
179 |
+
weight_name = weight_name,#,"ip-adapter-instant-id.bin",
|
180 |
+
image_encoder_folder=None,
|
181 |
+
)
|
182 |
+
self.unet.encoder_hid_proj.image_projection_layers[0] = self.image_proj_model
|
183 |
+
else:
|
184 |
+
self.set_ip_adapter(model_ckpt_instant, num_tokens, scale)
|
185 |
+
|
186 |
+
def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
|
187 |
+
|
188 |
+
image_proj_model = Resampler(
|
189 |
+
dim=1280,
|
190 |
+
depth=4,
|
191 |
+
dim_head=64,
|
192 |
+
heads=20,
|
193 |
+
num_queries=num_tokens,
|
194 |
+
embedding_dim=image_emb_dim,
|
195 |
+
output_dim=self.unet.config.cross_attention_dim,
|
196 |
+
ff_mult=4,
|
197 |
+
)
|
198 |
+
|
199 |
+
image_proj_model.eval()
|
200 |
+
|
201 |
+
self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype)
|
202 |
+
state_dict = torch.load(model_ckpt, map_location="cpu")
|
203 |
+
if 'image_proj' in state_dict:
|
204 |
+
state_dict = state_dict["image_proj"]
|
205 |
+
self.image_proj_model.load_state_dict(state_dict)
|
206 |
+
|
207 |
+
self.image_proj_model_in_features = image_emb_dim
|
208 |
+
|
209 |
+
def set_ip_adapter(self, model_ckpt, num_tokens, scale):
|
210 |
+
|
211 |
+
unet = self.unet
|
212 |
+
attn_procs = {}
|
213 |
+
for name in unet.attn_processors.keys():
|
214 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
215 |
+
if name.startswith("mid_block"):
|
216 |
+
hidden_size = unet.config.block_out_channels[-1]
|
217 |
+
elif name.startswith("up_blocks"):
|
218 |
+
block_id = int(name[len("up_blocks.")])
|
219 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
220 |
+
elif name.startswith("down_blocks"):
|
221 |
+
block_id = int(name[len("down_blocks.")])
|
222 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
223 |
+
if cross_attention_dim is None:
|
224 |
+
attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
|
225 |
+
else:
|
226 |
+
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size,
|
227 |
+
cross_attention_dim=cross_attention_dim,
|
228 |
+
scale=scale,
|
229 |
+
num_tokens=num_tokens).to(unet.device, dtype=unet.dtype)
|
230 |
+
unet.set_attn_processor(attn_procs)
|
231 |
+
|
232 |
+
state_dict = torch.load(model_ckpt, map_location="cpu")
|
233 |
+
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
|
234 |
+
if 'ip_adapter' in state_dict:
|
235 |
+
state_dict = state_dict['ip_adapter']
|
236 |
+
ip_layers.load_state_dict(state_dict)
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
def set_ip_adapter_scale(self, scale):
|
241 |
+
if self.use_native_ip_adapter:
|
242 |
+
super().set_ip_adapter_scale(scale)
|
243 |
+
else:
|
244 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
245 |
+
for attn_processor in unet.attn_processors.values():
|
246 |
+
if isinstance(attn_processor, IPAttnProcessor):
|
247 |
+
attn_processor.scale = scale
|
248 |
+
|
249 |
+
def _encode_prompt_image_emb(self, prompt_image_emb, device, num_images_per_prompt, dtype, do_classifier_free_guidance):
|
250 |
+
|
251 |
+
if isinstance(prompt_image_emb, torch.Tensor):
|
252 |
+
prompt_image_emb = prompt_image_emb.clone().detach()
|
253 |
+
else:
|
254 |
+
prompt_image_emb = torch.tensor(prompt_image_emb)
|
255 |
+
|
256 |
+
prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
|
257 |
+
|
258 |
+
if do_classifier_free_guidance:
|
259 |
+
prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
|
260 |
+
else:
|
261 |
+
prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
|
262 |
+
|
263 |
+
prompt_image_emb = prompt_image_emb.to(device=self.image_proj_model.latents.device,
|
264 |
+
dtype=self.image_proj_model.latents.dtype)
|
265 |
+
|
266 |
+
orig_embeds = prompt_image_emb
|
267 |
+
prompt_image_emb = self.image_proj_model(prompt_image_emb)
|
268 |
+
|
269 |
+
bs_embed, seq_len, _ = prompt_image_emb.shape
|
270 |
+
prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1)
|
271 |
+
prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
272 |
+
|
273 |
+
return prompt_image_emb.to(device=device, dtype=dtype), orig_embeds.to(device=device, dtype=dtype)
|
274 |
+
|
275 |
+
@torch.no_grad()
|
276 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
277 |
+
def __call__(
|
278 |
+
self,
|
279 |
+
prompt: Union[str, List[str]] = None,
|
280 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
281 |
+
image: PipelineImageInput = None,
|
282 |
+
height: Optional[int] = None,
|
283 |
+
width: Optional[int] = None,
|
284 |
+
num_inference_steps: int = 50,
|
285 |
+
guidance_scale: float = 5.0,
|
286 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
287 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
288 |
+
num_images_per_prompt: Optional[int] = 1,
|
289 |
+
eta: float = 0.0,
|
290 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
291 |
+
latents: Optional[torch.FloatTensor] = None,
|
292 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
293 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
294 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
295 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
296 |
+
image_embeds: Optional[torch.FloatTensor] = None,
|
297 |
+
output_type: Optional[str] = "pil",
|
298 |
+
return_dict: bool = True,
|
299 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
300 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
301 |
+
guess_mode: bool = False,
|
302 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
303 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
304 |
+
original_size: Tuple[int, int] = None,
|
305 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
306 |
+
target_size: Tuple[int, int] = None,
|
307 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
308 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
309 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
310 |
+
clip_skip: Optional[int] = None,
|
311 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
312 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
313 |
+
visual_prompt_embds=None,
|
314 |
+
|
315 |
+
# IP adapter
|
316 |
+
ip_adapter_scale=None,
|
317 |
+
|
318 |
+
**kwargs,
|
319 |
+
):
|
320 |
+
r"""
|
321 |
+
The call function to the pipeline for generation.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
prompt (`str` or `List[str]`, *optional*):
|
325 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
326 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
327 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
328 |
+
used in both text-encoders.
|
329 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
330 |
+
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
331 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
332 |
+
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
|
333 |
+
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
334 |
+
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
|
335 |
+
`init`, images must be passed as a list such that each element of the list can be correctly batched for
|
336 |
+
input to a single ControlNet.
|
337 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
338 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
339 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
340 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
341 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
342 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
343 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
344 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
345 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
346 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
347 |
+
expense of slower inference.
|
348 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
349 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
350 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
351 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
352 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
353 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
354 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
355 |
+
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
356 |
+
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
357 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
358 |
+
The number of images to generate per prompt.
|
359 |
+
eta (`float`, *optional*, defaults to 0.0):
|
360 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
361 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
362 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
363 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
364 |
+
generation deterministic.
|
365 |
+
latents (`torch.FloatTensor`, *optional*):
|
366 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
367 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
368 |
+
tensor is generated by sampling using the supplied random `generator`.
|
369 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
370 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
371 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
372 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
373 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
374 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
375 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
376 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
377 |
+
not provided, pooled text embeddings are generated from `prompt` input argument.
|
378 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
379 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
380 |
+
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
381 |
+
argument.
|
382 |
+
image_embeds (`torch.FloatTensor`, *optional*):
|
383 |
+
Pre-generated image embeddings.
|
384 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
385 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
386 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
387 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
388 |
+
plain tuple.
|
389 |
+
cross_attention_kwargs (`dict`, *optional*):
|
390 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
391 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
392 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
393 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
394 |
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
395 |
+
the corresponding scale as a list.
|
396 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
397 |
+
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
398 |
+
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
399 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
400 |
+
The percentage of total steps at which the ControlNet starts applying.
|
401 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
402 |
+
The percentage of total steps at which the ControlNet stops applying.
|
403 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
404 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
405 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
406 |
+
explained in section 2.2 of
|
407 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
408 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
409 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
410 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
411 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
412 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
413 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
414 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
415 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
416 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
417 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
418 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
419 |
+
micro-conditioning as explained in section 2.2 of
|
420 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
421 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
422 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
423 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
424 |
+
micro-conditioning as explained in section 2.2 of
|
425 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
426 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
427 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
428 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
429 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
430 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
431 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
432 |
+
clip_skip (`int`, *optional*):
|
433 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
434 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
435 |
+
callback_on_step_end (`Callable`, *optional*):
|
436 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
437 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
438 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
439 |
+
`callback_on_step_end_tensor_inputs`.
|
440 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
441 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
442 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
443 |
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
444 |
+
|
445 |
+
Examples:
|
446 |
+
|
447 |
+
Returns:
|
448 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
449 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
450 |
+
otherwise a `tuple` is returned containing the output images.
|
451 |
+
"""
|
452 |
+
|
453 |
+
callback = kwargs.pop("callback", None)
|
454 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
455 |
+
|
456 |
+
if callback is not None:
|
457 |
+
deprecate(
|
458 |
+
"callback",
|
459 |
+
"1.0.0",
|
460 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
461 |
+
)
|
462 |
+
if callback_steps is not None:
|
463 |
+
deprecate(
|
464 |
+
"callback_steps",
|
465 |
+
"1.0.0",
|
466 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
467 |
+
)
|
468 |
+
|
469 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
470 |
+
|
471 |
+
# align format for control guidance
|
472 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
473 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
474 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
475 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
476 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
477 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
478 |
+
control_guidance_start, control_guidance_end = (
|
479 |
+
mult * [control_guidance_start],
|
480 |
+
mult * [control_guidance_end],
|
481 |
+
)
|
482 |
+
|
483 |
+
# 0. set ip_adapter_scale
|
484 |
+
if ip_adapter_scale is not None:
|
485 |
+
self.set_ip_adapter_scale(ip_adapter_scale)
|
486 |
+
|
487 |
+
# 1. Check inputs. Raise error if not correct
|
488 |
+
self.check_inputs(
|
489 |
+
prompt=prompt,
|
490 |
+
prompt_2=prompt_2,
|
491 |
+
image=image,
|
492 |
+
callback_steps=callback_steps,
|
493 |
+
negative_prompt=negative_prompt,
|
494 |
+
negative_prompt_2=negative_prompt_2,
|
495 |
+
prompt_embeds=prompt_embeds,
|
496 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
497 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
498 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
499 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
500 |
+
control_guidance_start=control_guidance_start,
|
501 |
+
control_guidance_end=control_guidance_end,
|
502 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
503 |
+
)
|
504 |
+
|
505 |
+
self._guidance_scale = guidance_scale
|
506 |
+
self._clip_skip = clip_skip
|
507 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
508 |
+
|
509 |
+
# 2. Define call parameters
|
510 |
+
if prompt is not None and isinstance(prompt, str):
|
511 |
+
batch_size = 1
|
512 |
+
elif prompt is not None and isinstance(prompt, list):
|
513 |
+
batch_size = len(prompt)
|
514 |
+
else:
|
515 |
+
batch_size = prompt_embeds.shape[0]
|
516 |
+
|
517 |
+
device = self._execution_device
|
518 |
+
|
519 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
520 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
521 |
+
|
522 |
+
global_pool_conditions = (
|
523 |
+
controlnet.config.global_pool_conditions
|
524 |
+
if isinstance(controlnet, ControlNetModel)
|
525 |
+
else controlnet.nets[0].config.global_pool_conditions
|
526 |
+
)
|
527 |
+
guess_mode = guess_mode or global_pool_conditions
|
528 |
+
|
529 |
+
# 3.1 Encode input prompt
|
530 |
+
text_encoder_lora_scale = (
|
531 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
532 |
+
)
|
533 |
+
(
|
534 |
+
prompt_embeds,
|
535 |
+
negative_prompt_embeds,
|
536 |
+
pooled_prompt_embeds,
|
537 |
+
negative_pooled_prompt_embeds,
|
538 |
+
) = self.encode_prompt(
|
539 |
+
prompt,
|
540 |
+
prompt_2,
|
541 |
+
device,
|
542 |
+
num_images_per_prompt,
|
543 |
+
self.do_classifier_free_guidance,
|
544 |
+
negative_prompt,
|
545 |
+
negative_prompt_2,
|
546 |
+
prompt_embeds=prompt_embeds,
|
547 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
548 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
549 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
550 |
+
lora_scale=text_encoder_lora_scale,
|
551 |
+
clip_skip=self.clip_skip,
|
552 |
+
)
|
553 |
+
|
554 |
+
# 3.2 Encode image prompt
|
555 |
+
prompt_image_emb , image_embeds = self._encode_prompt_image_emb(image_embeds,
|
556 |
+
device,
|
557 |
+
num_images_per_prompt,
|
558 |
+
self.unet.dtype,
|
559 |
+
self.do_classifier_free_guidance)
|
560 |
+
|
561 |
+
# 4. Prepare image
|
562 |
+
if isinstance(controlnet, ControlNetModel):
|
563 |
+
image = self.prepare_image(
|
564 |
+
image=image,
|
565 |
+
width=width,
|
566 |
+
height=height,
|
567 |
+
batch_size=batch_size * num_images_per_prompt,
|
568 |
+
num_images_per_prompt=num_images_per_prompt,
|
569 |
+
device=device,
|
570 |
+
dtype=controlnet.dtype,
|
571 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
572 |
+
guess_mode=guess_mode,
|
573 |
+
)
|
574 |
+
height, width = image.shape[-2:]
|
575 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
576 |
+
images = []
|
577 |
+
|
578 |
+
for image_ in image:
|
579 |
+
image_ = self.prepare_image(
|
580 |
+
image=image_,
|
581 |
+
width=width,
|
582 |
+
height=height,
|
583 |
+
batch_size=batch_size * num_images_per_prompt,
|
584 |
+
num_images_per_prompt=num_images_per_prompt,
|
585 |
+
device=device,
|
586 |
+
dtype=controlnet.dtype,
|
587 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
588 |
+
guess_mode=guess_mode,
|
589 |
+
)
|
590 |
+
|
591 |
+
images.append(image_)
|
592 |
+
|
593 |
+
image = images
|
594 |
+
height, width = image[0].shape[-2:]
|
595 |
+
else:
|
596 |
+
assert False
|
597 |
+
|
598 |
+
# 5. Prepare timesteps
|
599 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
600 |
+
timesteps = self.scheduler.timesteps
|
601 |
+
self._num_timesteps = len(timesteps)
|
602 |
+
|
603 |
+
# 6. Prepare latent variables
|
604 |
+
num_channels_latents = self.unet.config.in_channels
|
605 |
+
latents = self.prepare_latents(
|
606 |
+
batch_size * num_images_per_prompt,
|
607 |
+
num_channels_latents,
|
608 |
+
height,
|
609 |
+
width,
|
610 |
+
prompt_embeds.dtype,
|
611 |
+
device,
|
612 |
+
generator,
|
613 |
+
latents,
|
614 |
+
)
|
615 |
+
|
616 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
617 |
+
timestep_cond = None
|
618 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
619 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
620 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
621 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
622 |
+
).to(device=device, dtype=latents.dtype)
|
623 |
+
|
624 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
625 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
626 |
+
|
627 |
+
# 7.1 Create tensor stating which controlnets to keep
|
628 |
+
controlnet_keep = []
|
629 |
+
for i in range(len(timesteps)):
|
630 |
+
keeps = [
|
631 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
632 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
633 |
+
]
|
634 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
635 |
+
|
636 |
+
# 7.2 Prepare added time ids & embeddings
|
637 |
+
if isinstance(image, list):
|
638 |
+
original_size = original_size or image[0].shape[-2:]
|
639 |
+
else:
|
640 |
+
original_size = original_size or image.shape[-2:]
|
641 |
+
target_size = target_size or (height, width)
|
642 |
+
|
643 |
+
add_text_embeds = pooled_prompt_embeds
|
644 |
+
if self.text_encoder_2 is None:
|
645 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
646 |
+
else:
|
647 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
648 |
+
|
649 |
+
add_time_ids = self._get_add_time_ids(
|
650 |
+
original_size,
|
651 |
+
crops_coords_top_left,
|
652 |
+
target_size,
|
653 |
+
dtype=prompt_embeds.dtype,
|
654 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
655 |
+
)
|
656 |
+
|
657 |
+
if negative_original_size is not None and negative_target_size is not None:
|
658 |
+
negative_add_time_ids = self._get_add_time_ids(
|
659 |
+
negative_original_size,
|
660 |
+
negative_crops_coords_top_left,
|
661 |
+
negative_target_size,
|
662 |
+
dtype=prompt_embeds.dtype,
|
663 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
664 |
+
)
|
665 |
+
else:
|
666 |
+
negative_add_time_ids = add_time_ids
|
667 |
+
|
668 |
+
if self.do_classifier_free_guidance:
|
669 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
670 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
671 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
672 |
+
|
673 |
+
prompt_embeds = prompt_embeds.to(device)
|
674 |
+
add_text_embeds = add_text_embeds.to(device)
|
675 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
676 |
+
# encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
|
677 |
+
|
678 |
+
# 8. Denoising loop
|
679 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
680 |
+
is_unet_compiled = is_compiled_module(self.unet)
|
681 |
+
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
682 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
683 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
684 |
+
for i, t in enumerate(timesteps):
|
685 |
+
# Relevant thread:
|
686 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
687 |
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
688 |
+
torch._inductor.cudagraph_mark_step_begin()
|
689 |
+
# expand the latents if we are doing classifier free guidance
|
690 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
691 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
692 |
+
|
693 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
694 |
+
|
695 |
+
new_conditions = {k:v for k,v in added_cond_kwargs.items()}
|
696 |
+
# visual_prompt_embds = image_embeds #torch.from_numpy(image_embeds).repeat(1,1,1).to(device=self.unet.device,dtype = self.unet.dtype)
|
697 |
+
# if self.do_classifier_free_guidance:
|
698 |
+
# visual_prompt_embds = torch.concat([torch.zeros_like(image_embeds),image_embeds])
|
699 |
+
if visual_prompt_embds is not None:
|
700 |
+
new_conditions['image_embeds']= [image_embeds.unsqueeze(dim=1),visual_prompt_embds]
|
701 |
+
else:
|
702 |
+
new_conditions['image_embeds']= [image_embeds.unsqueeze(dim=1)]
|
703 |
+
|
704 |
+
|
705 |
+
# controlnet(s) inference
|
706 |
+
if guess_mode and self.do_classifier_free_guidance:
|
707 |
+
# Infer ControlNet only for the conditional batch.
|
708 |
+
control_model_input = latents
|
709 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
710 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
711 |
+
controlnet_added_cond_kwargs = {
|
712 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
713 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
714 |
+
}
|
715 |
+
else:
|
716 |
+
control_model_input = latent_model_input
|
717 |
+
controlnet_prompt_embeds = prompt_embeds
|
718 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
719 |
+
|
720 |
+
if isinstance(controlnet_keep[i], list):
|
721 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
722 |
+
else:
|
723 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
724 |
+
if isinstance(controlnet_cond_scale, list):
|
725 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
726 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
727 |
+
|
728 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
729 |
+
control_model_input,
|
730 |
+
t,
|
731 |
+
encoder_hidden_states=prompt_image_emb,
|
732 |
+
controlnet_cond=image,
|
733 |
+
conditioning_scale=cond_scale,
|
734 |
+
guess_mode=guess_mode,
|
735 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
736 |
+
return_dict=False,
|
737 |
+
)
|
738 |
+
|
739 |
+
if guess_mode and self.do_classifier_free_guidance:
|
740 |
+
# Infered ControlNet only for the conditional batch.
|
741 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
742 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
743 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
744 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
745 |
+
# predict the noise residual
|
746 |
+
|
747 |
+
|
748 |
+
if self.use_native_ip_adapter:
|
749 |
+
encoder_embeds =prompt_embeds
|
750 |
+
conds = new_conditions
|
751 |
+
else:
|
752 |
+
encoder_embeds = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
|
753 |
+
conds = added_cond_kwargs
|
754 |
+
|
755 |
+
|
756 |
+
noise_pred = self.unet(
|
757 |
+
latent_model_input,
|
758 |
+
t,
|
759 |
+
# encoder_hidden_states=prompt_embeds,
|
760 |
+
# image_embeds=prompt_image_emb,
|
761 |
+
encoder_hidden_states= encoder_embeds,
|
762 |
+
timestep_cond=timestep_cond,
|
763 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
764 |
+
down_block_additional_residuals=down_block_res_samples,
|
765 |
+
mid_block_additional_residual=mid_block_res_sample,
|
766 |
+
# added_cond_kwargs=new_conditions,#added_cond_kwargs,
|
767 |
+
added_cond_kwargs= conds,
|
768 |
+
return_dict=False,
|
769 |
+
)[0]
|
770 |
+
|
771 |
+
# perform guidance
|
772 |
+
if self.do_classifier_free_guidance:
|
773 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
774 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
775 |
+
|
776 |
+
# compute the previous noisy sample x_t -> x_t-1
|
777 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
778 |
+
|
779 |
+
if callback_on_step_end is not None:
|
780 |
+
callback_kwargs = {}
|
781 |
+
for k in callback_on_step_end_tensor_inputs:
|
782 |
+
callback_kwargs[k] = locals()[k]
|
783 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
784 |
+
|
785 |
+
latents = callback_outputs.pop("latents", latents)
|
786 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
787 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
788 |
+
|
789 |
+
# call the callback, if provided
|
790 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
791 |
+
progress_bar.update()
|
792 |
+
if callback is not None and i % callback_steps == 0:
|
793 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
794 |
+
callback(step_idx, t, latents)
|
795 |
+
|
796 |
+
if not output_type == "latent":
|
797 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
798 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
799 |
+
|
800 |
+
if needs_upcasting:
|
801 |
+
self.upcast_vae()
|
802 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
803 |
+
|
804 |
+
# unscale/denormalize the latents
|
805 |
+
# denormalize with the mean and std if available and not None
|
806 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
807 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
808 |
+
if has_latents_mean and has_latents_std:
|
809 |
+
latents_mean = (
|
810 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
811 |
+
)
|
812 |
+
latents_std = (
|
813 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
814 |
+
)
|
815 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
816 |
+
else:
|
817 |
+
latents = latents / self.vae.config.scaling_factor
|
818 |
+
|
819 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
820 |
+
|
821 |
+
# cast back to fp16 if needed
|
822 |
+
if needs_upcasting:
|
823 |
+
self.vae.to(dtype=torch.float16)
|
824 |
+
else:
|
825 |
+
image = latents
|
826 |
+
|
827 |
+
if not output_type == "latent":
|
828 |
+
# apply watermark if available
|
829 |
+
if self.watermark is not None:
|
830 |
+
image = self.watermark.apply_watermark(image)
|
831 |
+
|
832 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
833 |
+
|
834 |
+
# Offload all models
|
835 |
+
self.maybe_free_model_hooks()
|
836 |
+
|
837 |
+
if not return_dict:
|
838 |
+
return (image,)
|
839 |
+
|
840 |
+
return StableDiffusionXLPipelineOutput(images=image)
|