Spaces:
Running
Running
File size: 10,767 Bytes
b37eaa7 0579f22 1321bec 0579f22 351fa18 0579f22 322f7aa fe5d244 0579f22 cf1e174 d31dc0c 78e91a7 0579f22 fe7fe44 322f7aa 0579f22 322f7aa 0579f22 cf1e174 0579f22 70d358c 10d544d cf1e174 0579f22 de5b559 0579f22 3827748 0579f22 a20ffdb 77a99bc 185bc9f 0579f22 a790b06 0579f22 41191f9 0579f22 73b6463 17cb77c f8e2260 73b6463 0579f22 f8e2260 0579f22 de5b559 0579f22 9b90345 0579f22 39cf3e0 0579f22 09af2a8 0579f22 ddc77aa 0579f22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from huggingface_hub import InferenceClient, hf_api
#from html2image import Html2Image
import gradio as gr
#import markdown
import requests
import random
import prompts
#import im_prompts
import uuid
import json
#import PIL
#import bs4
import re
import os
loc_folder="chat_history"
loc_file="chat_json"
clients = [
{'type':'image','name':'black-forest-labs/FLUX.1-dev','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'deepseek-ai/DeepSeek-V2.5-1210','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'Qwen/Qwen2.5-Coder-32B-Instruct','rank':'op','max_tokens':32768,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'meta-llama/Meta-Llama-3-8B','rank':'op','max_tokens':32768,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'Snowflake/snowflake-arctic-embed-l-v2.0','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'Snowflake/snowflake-arctic-embed-m-v2.0','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'HuggingFaceTB/SmolLM2-1.7B-Instruct','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'Qwen/QwQ-32B-Preview','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'meta-llama/Llama-3.3-70B-Instruct','rank':'pro','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'mistralai/Mixtral-8x7B-Instruct-v0.1','rank':'op','max_tokens':40000,'schema':{'bos':'<s>','eos':'</s>'}},
]
def format_prompt(message, mod, system):
eos=f"{clients[int(mod)]['schema']['eos']}\n"
bos=f"{clients[int(mod)]['schema']['bos']}\n"
prompt=""
prompt+=bos
prompt+=system
prompt+=eos
prompt+=bos
prompt += f"[INST] {message} [/INST]"
prompt+=eos
prompt+=bos
return prompt
def generate(prompt,history,mod=2,tok=4000,seed=1,role="ASSISTANT",data=None):
#print("#####",history,"######")
gen_images=False
client=InferenceClient(clients[int(mod)]['name'])
client_tok=clients[int(mod)]['max_tokens']
good_seed=[947385642222,7482965345792,8584806344673]
if not history:
history=[{'role':'user','content':prompt}]
if not os.path.isdir(loc_folder):os.mkdir(loc_folder)
if os.path.isfile(f'{loc_folder}/{loc_file}.json'):
with open(f'{loc_folder}/{loc_file}.json','r') as word_dict:
lod=json.loads(word_dict.read())
word_dict.close()
else:
lod=[]
if role == "MANAGER":
system_prompt = prompts.MANAGER.replace("**TIMELINE**",data[4]).replace("**HISTORY**",str(history))
formatted_prompt = format_prompt(prompt, mod, system_prompt)
elif role == "PATHMAKER":
system_prompt = prompts.PATH_MAKER.replace("**CURRENT_OR_NONE**",str(data[4])).replace("**PROMPT**",json.dumps(data[0],indent=4)).replace("**HISTORY**",str(history))
formatted_prompt = format_prompt(prompt, mod, system_prompt)
elif role == "CREATE_FILE":
system_prompt = prompts.CREATE_FILE.replace("**TIMELINE**",data[4]).replace("**FILENAME**",str(data[4]))
formatted_prompt = format_prompt(prompt, mod, system_prompt)
elif role == "SEARCH":
system_prompt = prompts.SEARCH.replace("**DATA**",data)
formatted_prompt = format_prompt(f'USER:{prompt}', mod, system_prompt)
else: system_prompt = "";formatted_prompt = format_prompt(f'USER:{prompt}', mod, system_prompt)
if tok==None:tok=client_tok-len(formatted_prompt)+10
print("tok",tok)
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=tok, #total tokens - input tokens
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
output = ""
if role=="MANAGER":
print("Running Manager")
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
for response in stream:
output += response.token.text
yield output
yield history
yield prompt
elif role=="PATHMAKER":
print("Runnning ", role)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
#prompt=f"We just completed role:{role}, now choose the next tool to complete the task:{prompt}, or COMPLETE"
for response in stream:
output += response.token.text
#print(output)
yield output
yield history
yield prompt
elif role=="CREATE_FILE":
print("Running Create File")
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
for response in stream:
output += response.token.text
reponame=""
filename=""
filecontent=""
yield output
yield history
yield prompt
#with open(f'{loc_folder}/{loc_file}.json','w') as jobj:
# lod.append({'prompt':prompt,'response':output,'image':im_box,'model':clients[1]['name'],'seed':seed}),
# jobj.write(json.dumps(lod,indent=4))
#jobj.close()
#chat_im_out=chat_img(output)
def gen_im(prompt,seed):
print('generating image')
image_out = im_client.text_to_image(prompt=prompt['text'],height=128,width=128,num_inference_steps=10,seed=seed)
#print(type(image_out))
output=f'images/{uuid.uuid4()}.png'
image_out.save(output)
print('Done: ',output)
return [{'role':'assistant','content': {'path':output}}]
def build_space(repo_name,file_name,file_content,access_token=""):
try:
#access_token=""
client = hf_api(access_token)
# Create a new Space
response = client.create_repo(repo_name)
space_info = response.json()
print(space_info)
space_id = space_info["name"]
print(f"Created Space with ID: {space_id}")
local_file_path=str(uuid.uuid4())
with open(local_file_path, 'w') as f:
f.write(str(file_content))
f.close()
# Upload a local file to the Space
commit_message = "Adding file test: "+str(uuid.uuid4())
client.upload_file(local_file_path, repo_id=space_id, path=file_name, commit_message=commit_message)
print("File uploaded successfully.")
# Commit changes
commit_message += "\nInitial commit to the repository."+ local_file_path
client.commit_repo(space_id, message=commit_message)
return [{'role':'assistant','content': commit_message+'\nCommit Success' }]
except Exception as e:
return [{'role':'assistant','content': 'There was an Error: '+e}]
def agent(prompt_in,history,mod=2):
print(prompt_in)
print('mod ',mod)
in_data=[None,None,None,None,None,]
#in_data[0]=prompt_in['text']
in_data[0]=prompt_in
prompt=prompt_in
fn=""
com=""
go=True
MAX_DATA=int(clients[int(mod)]['max_tokens'])*2
while go == True:
seed = random.randint(1,9999999999999)
c=0
history = [history[-4:]]
if len(str(history)) > MAX_DATA*4:
history = [history[-2:]]
role="PATHMAKER"
outph= list(generate(prompt,history,mod,2400,seed,role,in_data))[0]
print(outph)
history=history+[{'role':'assistant','content':str(outph)}]
yield history
role="MANAGER"
outp=generate(prompt,history,mod,128,seed,role,in_data)
outpp=list(outp)[0]
outp0 = re.sub('[^a-zA-Z0-9\s.,?!%()]', '', outpp)
history=history+[{'role':'assistant','content':str(outp0)}]
yield history
for line in outp0.split("\n"):
if "action:" in line:
try:
com_line = line.split('action:')[1]
fn = com_line.split('action_input=')[0]
com = com_line.split('action_input=')[1].split('<|im_end|>')[0]
#com = com_line.split('action_input=')[1].replace('<|im_end|>','').replace("}","").replace("]","").replace("'","")
print(com)
except Exception as e:
pass
fn="NONE"
if 'CREATE_FILE' in fn:
print('CREATE_FILE called')
out_w =generate(com,history,mod=mod,tok=None,seed=seed,role="CREATE_FILE")
build_space(out_w[0],out_w[1],out_w[2])
elif 'IMAGE' in fn:
print('IMAGE called')
out_im=gen_im(prompt,seed)
yield [{'role':'assistant','content': out_im}]
elif 'SEARCH' in fn:
print('SEARCH called')
elif 'COMPLETE' in fn:
print('COMPLETE')
go=False
break
elif 'NONE' in fn:
print('ERROR ACTION NOT FOUND')
history+=[{'role':'system','content':f'observation:The last thing we attempted resulted in an error, check formatting on the tool call'}]
else:pass;seed = random.randint(1,9999999999999)
with gr.Blocks() as ux:
with gr.Row():
with gr.Column():
gr.HTML("""<center><div style='font-size:xx-large;font-weight:900;'>Chatbo</div>""")
chatbot=gr.Chatbot(type='messages',show_label=False, show_share_button=False, show_copy_button=True, layout="panel")
#prompt=gr.MultimodalTextbox(label="Prompt",file_count="multiple", file_types=["image"])
mod_c=gr.Dropdown(choices=[n['name'] for n in clients],value='Qwen/Qwen2.5-Coder-32B-Instruct',type='index')
chat_ux=gr.ChatInterface(fn=agent,chatbot=chatbot,additional_inputs=[mod_c]).load()
#chat_ux.additional_inputs=[mod_c]
#chat_ux.load()
with gr.Row():
submit_b = gr.Button()
stop_b = gr.Button("Stop")
#clear = gr.ClearButton([chatbot,prompt])
with gr.Row(visible=False):
stt=gr.Textbox()
with gr.Column():
file_name=gr.Textbox(label="File Name")
file_btn=gr.Button("Load Files")
file_json=gr.JSON()
#sub_b = submit_b.click(agent, [chatbot],chatbot)
#sub_p = prompt.submit(agent, [chatbot],chatbot)
#stop_b.click(None,None,None, cancels=[sub_b,sub_p])
ux.queue(default_concurrency_limit=20).launch(max_threads=40)
|