File size: 10,767 Bytes
b37eaa7
0579f22
 
1321bec
0579f22
 
351fa18
0579f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322f7aa
 
 
 
 
 
 
 
 
 
 
 
 
fe5d244
0579f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf1e174
 
 
 
d31dc0c
78e91a7
0579f22
fe7fe44
322f7aa
0579f22
 
322f7aa
 
0579f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf1e174
 
0579f22
 
 
 
 
70d358c
10d544d
 
 
cf1e174
0579f22
 
 
 
 
de5b559
 
 
 
 
0579f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3827748
0579f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a20ffdb
77a99bc
185bc9f
0579f22
a790b06
 
 
0579f22
 
 
41191f9
0579f22
 
 
 
 
 
73b6463
 
17cb77c
f8e2260
73b6463
0579f22
 
 
 
f8e2260
0579f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de5b559
0579f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b90345
0579f22
39cf3e0
 
 
0579f22
 
 
09af2a8
0579f22
 
 
 
 
 
ddc77aa
 
 
0579f22
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from huggingface_hub import InferenceClient, hf_api
#from html2image import Html2Image
import gradio as gr
#import markdown
import requests
import random
import prompts
#import im_prompts
import uuid
import json
#import PIL
#import bs4
import re
import os
loc_folder="chat_history"
loc_file="chat_json"

clients = [
    {'type':'image','name':'black-forest-labs/FLUX.1-dev','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'deepseek-ai/DeepSeek-V2.5-1210','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'Qwen/Qwen2.5-Coder-32B-Instruct','rank':'op','max_tokens':32768,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'meta-llama/Meta-Llama-3-8B','rank':'op','max_tokens':32768,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'Snowflake/snowflake-arctic-embed-l-v2.0','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'Snowflake/snowflake-arctic-embed-m-v2.0','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'HuggingFaceTB/SmolLM2-1.7B-Instruct','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'Qwen/QwQ-32B-Preview','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'meta-llama/Llama-3.3-70B-Instruct','rank':'pro','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
    {'type':'text','name':'mistralai/Mixtral-8x7B-Instruct-v0.1','rank':'op','max_tokens':40000,'schema':{'bos':'<s>','eos':'</s>'}},
]

def format_prompt(message, mod, system):
    eos=f"{clients[int(mod)]['schema']['eos']}\n"
    bos=f"{clients[int(mod)]['schema']['bos']}\n"
    prompt=""
    prompt+=bos
    prompt+=system
    prompt+=eos
    prompt+=bos
    prompt += f"[INST] {message} [/INST]"
    prompt+=eos
    prompt+=bos
    return prompt
def generate(prompt,history,mod=2,tok=4000,seed=1,role="ASSISTANT",data=None):
    #print("#####",history,"######")
    gen_images=False
    client=InferenceClient(clients[int(mod)]['name'])
    client_tok=clients[int(mod)]['max_tokens']
    good_seed=[947385642222,7482965345792,8584806344673]
    if not history:
        history=[{'role':'user','content':prompt}]
    if not os.path.isdir(loc_folder):os.mkdir(loc_folder)

    if os.path.isfile(f'{loc_folder}/{loc_file}.json'):
        with open(f'{loc_folder}/{loc_file}.json','r') as word_dict:
            lod=json.loads(word_dict.read())
        word_dict.close()    
    else:
        lod=[]
    if role == "MANAGER":
        system_prompt = prompts.MANAGER.replace("**TIMELINE**",data[4]).replace("**HISTORY**",str(history))
        formatted_prompt = format_prompt(prompt, mod, system_prompt)
    elif role == "PATHMAKER":
        system_prompt = prompts.PATH_MAKER.replace("**CURRENT_OR_NONE**",str(data[4])).replace("**PROMPT**",json.dumps(data[0],indent=4)).replace("**HISTORY**",str(history))
        formatted_prompt = format_prompt(prompt, mod, system_prompt)
    elif role == "CREATE_FILE":
        system_prompt = prompts.CREATE_FILE.replace("**TIMELINE**",data[4]).replace("**FILENAME**",str(data[4]))
        formatted_prompt = format_prompt(prompt, mod, system_prompt)
    elif role == "SEARCH":
        system_prompt = prompts.SEARCH.replace("**DATA**",data)
        formatted_prompt = format_prompt(f'USER:{prompt}', mod, system_prompt)
    else: system_prompt = "";formatted_prompt = format_prompt(f'USER:{prompt}', mod, system_prompt)
    
    if tok==None:tok=client_tok-len(formatted_prompt)+10
    print("tok",tok)
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=tok, #total tokens - input tokens
        top_p=0.99,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )
    output = ""
    if role=="MANAGER":
        print("Running Manager")
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
        for response in stream:
            output += response.token.text
        yield output
        yield history
        yield prompt

    elif role=="PATHMAKER":
        print("Runnning ", role)
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
        #prompt=f"We just completed role:{role}, now choose the next tool to complete the task:{prompt}, or COMPLETE"
        for response in stream:
            output += response.token.text
            #print(output)
        yield output
        yield history
        yield prompt
        
    elif role=="CREATE_FILE":
        print("Running Create File")
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
        for response in stream:
            output += response.token.text
        
        reponame=""
        filename=""
        filecontent=""
        
        yield output
        yield history
        yield prompt
    #with open(f'{loc_folder}/{loc_file}.json','w') as jobj:
    #    lod.append({'prompt':prompt,'response':output,'image':im_box,'model':clients[1]['name'],'seed':seed}),
    #    jobj.write(json.dumps(lod,indent=4))
    #jobj.close()    
    #chat_im_out=chat_img(output)

def gen_im(prompt,seed):
    print('generating image')
    image_out = im_client.text_to_image(prompt=prompt['text'],height=128,width=128,num_inference_steps=10,seed=seed)
    #print(type(image_out))
    output=f'images/{uuid.uuid4()}.png'
    image_out.save(output)
    print('Done: ',output)
    return [{'role':'assistant','content': {'path':output}}]

def build_space(repo_name,file_name,file_content,access_token=""):
    try:
        #access_token=""
        client = hf_api(access_token)
        # Create a new Space
        response = client.create_repo(repo_name)
        space_info = response.json()
        print(space_info)
        space_id = space_info["name"]
        print(f"Created Space with ID: {space_id}")
        local_file_path=str(uuid.uuid4())
        with open(local_file_path, 'w') as f:
            f.write(str(file_content))
        f.close()
        # Upload a local file to the Space
        commit_message = "Adding file test: "+str(uuid.uuid4())
        client.upload_file(local_file_path, repo_id=space_id, path=file_name, commit_message=commit_message)
        print("File uploaded successfully.")
        # Commit changes
        commit_message += "\nInitial commit to the repository."+ local_file_path
        client.commit_repo(space_id, message=commit_message)
        return [{'role':'assistant','content': commit_message+'\nCommit Success' }]
    except Exception as e:
        return [{'role':'assistant','content': 'There was an Error: '+e}]

        
def agent(prompt_in,history,mod=2):
    print(prompt_in)
    print('mod ',mod)
    in_data=[None,None,None,None,None,]
    #in_data[0]=prompt_in['text']
    in_data[0]=prompt_in
    prompt=prompt_in
    fn=""
    com=""
    go=True
    MAX_DATA=int(clients[int(mod)]['max_tokens'])*2
    while go == True:
        seed = random.randint(1,9999999999999)
        c=0
        history = [history[-4:]]
        if len(str(history)) > MAX_DATA*4:
            history = [history[-2:]]
        role="PATHMAKER"
        outph= list(generate(prompt,history,mod,2400,seed,role,in_data))[0]
        print(outph)
        history=history+[{'role':'assistant','content':str(outph)}]
        yield history
        role="MANAGER"
        outp=generate(prompt,history,mod,128,seed,role,in_data)
        outpp=list(outp)[0]
        outp0 = re.sub('[^a-zA-Z0-9\s.,?!%()]', '', outpp)
        history=history+[{'role':'assistant','content':str(outp0)}]
        yield history
        for line in outp0.split("\n"):
            if "action:" in line:
                try:
                    com_line = line.split('action:')[1]
                    fn = com_line.split('action_input=')[0]
                    com = com_line.split('action_input=')[1].split('<|im_end|>')[0]
                    #com = com_line.split('action_input=')[1].replace('<|im_end|>','').replace("}","").replace("]","").replace("'","")
                    print(com)
                except Exception as e:
                    pass
                    fn="NONE"
                if 'CREATE_FILE' in fn:
                    print('CREATE_FILE called')
                    out_w =generate(com,history,mod=mod,tok=None,seed=seed,role="CREATE_FILE")
                    build_space(out_w[0],out_w[1],out_w[2])
                elif 'IMAGE' in fn:
                    print('IMAGE called')
                    out_im=gen_im(prompt,seed)
                    yield [{'role':'assistant','content': out_im}]
                elif 'SEARCH' in fn:
                    print('SEARCH called')
                elif 'COMPLETE' in fn:
                    print('COMPLETE')
                    go=False
                    break
                elif 'NONE' in fn:
                    print('ERROR ACTION NOT FOUND')
                    history+=[{'role':'system','content':f'observation:The last thing we attempted resulted in an error, check formatting on the tool call'}]

                else:pass;seed = random.randint(1,9999999999999)
with gr.Blocks() as ux:
    with gr.Row():
        with gr.Column():
            gr.HTML("""<center><div style='font-size:xx-large;font-weight:900;'>Chatbo</div>""")
            chatbot=gr.Chatbot(type='messages',show_label=False, show_share_button=False, show_copy_button=True, layout="panel")
            #prompt=gr.MultimodalTextbox(label="Prompt",file_count="multiple", file_types=["image"])
            mod_c=gr.Dropdown(choices=[n['name'] for n in clients],value='Qwen/Qwen2.5-Coder-32B-Instruct',type='index')
            chat_ux=gr.ChatInterface(fn=agent,chatbot=chatbot,additional_inputs=[mod_c]).load()
            #chat_ux.additional_inputs=[mod_c]
            #chat_ux.load()
            with gr.Row():
                submit_b = gr.Button()
                stop_b = gr.Button("Stop")
                #clear = gr.ClearButton([chatbot,prompt])
            with gr.Row(visible=False):
                stt=gr.Textbox()
        with gr.Column():
            file_name=gr.Textbox(label="File Name")
            file_btn=gr.Button("Load Files")
            file_json=gr.JSON()
    #sub_b = submit_b.click(agent, [chatbot],chatbot)
    #sub_p = prompt.submit(agent, [chatbot],chatbot)
    #stop_b.click(None,None,None, cancels=[sub_b,sub_p])
ux.queue(default_concurrency_limit=20).launch(max_threads=40)