Basic_Agent / app.py
broadfield's picture
Update app.py
17e29c4 verified
raw
history blame
12.9 kB
from huggingface_hub import InferenceClient, HfApi
#from html2image import Html2Image
import gradio as gr
#import markdown
import requests
import random
import prompts
#import im_prompts
import uuid
import json
#import PIL
#import bs4
import re
import os
loc_folder="chat_history"
loc_file="chat_json"
clients = [
{'type':'image','name':'black-forest-labs/FLUX.1-dev','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'deepseek-ai/DeepSeek-V2.5-1210','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'Qwen/Qwen2.5-Coder-32B-Instruct','rank':'op','max_tokens':32768,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'meta-llama/Meta-Llama-3-8B','rank':'op','max_tokens':32768,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'Snowflake/snowflake-arctic-embed-l-v2.0','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'Snowflake/snowflake-arctic-embed-m-v2.0','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'HuggingFaceTB/SmolLM2-1.7B-Instruct','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'Qwen/QwQ-32B-Preview','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'meta-llama/Llama-3.3-70B-Instruct','rank':'pro','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}},
{'type':'text','name':'mistralai/Mixtral-8x7B-Instruct-v0.1','rank':'op','max_tokens':40000,'schema':{'bos':'<s>','eos':'</s>'}},
]
def format_prompt(message, mod, system):
eos=f"{clients[int(mod)]['schema']['eos']}\n"
bos=f"{clients[int(mod)]['schema']['bos']}\n"
prompt=""
prompt+=bos
prompt+=system
prompt+=eos
prompt+=bos
prompt += f"[INST] {message} [/INST]"
prompt+=eos
prompt+=bos
return prompt
def generate(prompt,history,mod=2,tok=4000,seed=1,role="ASSISTANT",data=None):
#print("#####",history,"######")
gen_images=False
client=InferenceClient(clients[int(mod)]['name'])
client_tok=clients[int(mod)]['max_tokens']
good_seed=[947385642222,7482965345792,8584806344673]
if not history:
history=[{'role':'user','content':prompt}]
if not os.path.isdir(loc_folder):os.mkdir(loc_folder)
if os.path.isfile(f'{loc_folder}/{loc_file}.json'):
with open(f'{loc_folder}/{loc_file}.json','r') as word_dict:
lod=json.loads(word_dict.read())
word_dict.close()
else:
lod=[]
if role == "MANAGER":
system_prompt = prompts.MANAGER.replace("**TIMELINE**",data[4]).replace("**HISTORY**",str(history))
formatted_prompt = format_prompt(prompt, mod, system_prompt)
elif role == "PATHMAKER":
system_prompt = prompts.PATH_MAKER.replace("**CURRENT_OR_NONE**",str(data[4])).replace("**PROMPT**",json.dumps(data[0],indent=4)).replace("**HISTORY**",str(history))
formatted_prompt = format_prompt(prompt, mod, system_prompt)
elif role == "CREATE_FILE":
system_prompt = prompts.CREATE_FILE.replace("**TIMELINE**",data[4]).replace("**FILENAME**",str(data[1]))
formatted_prompt = format_prompt(prompt, mod, system_prompt)
elif role == "SEARCH":
system_prompt = prompts.SEARCH.replace("**DATA**",data)
formatted_prompt = format_prompt(f'USER:{prompt}', mod, system_prompt)
else: system_prompt = "";formatted_prompt = format_prompt(f'USER:{prompt}', mod, system_prompt)
if tok==None:tok=client_tok-len(formatted_prompt)+10
print("tok",tok)
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=tok, #total tokens - input tokens
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
output = ""
if role=="MANAGER":
print("Running Manager")
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
for response in stream:
output += response.token.text
yield output
yield history
yield prompt
elif role=="PATHMAKER":
print("Runnning ", role)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
#prompt=f"We just completed role:{role}, now choose the next tool to complete the task:{prompt}, or COMPLETE"
for response in stream:
output += response.token.text
print(output)
yield output
yield history
yield prompt
elif role=="CREATE_FILE":
print("Running Create File")
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
for response in stream:
output += response.token.text
#print(file_content)
print(output)
yield 'test1'
yield data[1]
yield output
#yield output
#yield history
#yield prompt
#with open(f'{loc_folder}/{loc_file}.json','w') as jobj:
# lod.append({'prompt':prompt,'response':output,'image':im_box,'model':clients[1]['name'],'seed':seed}),
# jobj.write(json.dumps(lod,indent=4))
#jobj.close()
#chat_im_out=chat_img(output)
'''def gen_im(prompt,seed):
print('generating image')
image_out = im_client.text_to_image(prompt=prompt['text'],height=128,width=128,num_inference_steps=10,seed=seed)
#print(type(image_out))
output=f'images/{uuid.uuid4()}.png'
image_out.save(output)
print('Done: ',output)
return [{'role':'assistant','content': {'path':output}}]'''
def parse_json(inp):
print("PARSE INPUT")
print(inp)
if type(inp)==type(""):
lines=""
if "```" in inp:
start = inp.find("```json") + 1 # Find index after the start character
end = inp.find("```", start) # Find index of end character from the start index
if start >= 0 and end >= 0:
inp= inp[start:end] # Slice the string between start and end
else:
inp="NONE" # Return None if characters not found
'''tog=False
cnt=0
for line in inp.split("\n"):
if tog==True:
if not "```" in line:
lines+=line
if "```" in line:
cnt+=1
if cnt==1:
tog = True
elif cnt==2:
tog = False'''
print("Extracted Lines")
print(inp)
try:
out_json=eval(inp)
out1=str(out_json['filename'])
out2=str(out_json['filecontent'])
return out1,out2
except Exception as e:
print(e)
return "None","None"
elif type(inp)==type({}):
out1=str(inp['filename'])
out2=str(inp['filecontent'])
return out1,out2
def build_space(repo_name,file_name,file_content,access_token=""):
try:
repo_path="broadfield/"+repo_name
if not access_token:access_token=os.environ['HF_TOKEN']
api=HfApi(endpoint="https://huggingface.co", token=access_token)
repo_url = api.create_repo(
repo_id=repo_path,
repo_type="space",
space_sdk="gradio",
exist_ok=True,
private=False,
)
# Create a new Space
#response = api.create_repo(repo_path)
#space_info = repo_url.json()
#print(space_info)
#space_id = space_info["name"]
#print(f"Created Space with ID: {space_id}")
local_file_path=str(uuid.uuid4())
with open(local_file_path, 'w') as f:
f.write(str(file_content))
f.close()
# Upload a local file to the Space
commit_message = "Adding file test: "+str(uuid.uuid4())
api.upload_file(path_or_fileobj=local_file_path, path_in_repo=file_name, repo_id=repo_path, repo_type='space', commit_message=commit_message)
print("File uploaded successfully.")
# Commit changes
commit_message += "\nInitial commit to the repository."+ local_file_path
#api.commit_repo(space_id, message=commit_message)
return [{'role':'assistant','content': commit_message+'\nCommit Success' }]
except Exception as e:
print("ERROR ",e)
return [{'role':'assistant','content': 'There was an Error: ' + str(e)}]
def agent(prompt_in,history,mod=2):
print(prompt_in)
print('mod ',mod)
in_data=[None,None,None,None,None,]
#in_data[0]=prompt_in['text']
in_data[0]=prompt_in
prompt=prompt_in
fn=""
com=""
go=True
MAX_DATA=int(clients[int(mod)]['max_tokens'])*2
while go == True:
seed = random.randint(1,9999999999999)
c=0
history = [history[-4:]]
if len(str(history)) > MAX_DATA*4:
history = [history[-2:]]
role="PATHMAKER"
outph= list(generate(prompt,history,mod,2400,seed,role,in_data))[0]
in_data[4]=outph
print(outph)
history=history+[{'role':'assistant','content':str(outph)}]
yield [{'role':'assistant','content':str(outph)}]
role="MANAGER"
outp=generate(prompt,history,mod,128,seed,role,in_data)
outp0=list(outp)[0].split('<|im_end|>')[0]
#outp0 = re.sub('[^a-zA-Z0-9\s.,?!%()]', '', outpp)
history=history+[{'role':'assistant','content':str(outp0)}]
yield [{'role':'assistant','content':str(outp0)}]
for line in outp0.split("\n"):
if "action:" in line:
try:
com_line = line.split('action:')[1]
fn = com_line.split('action_input=')[0]
com = com_line.split('action_input=')[1].split('<|im_end|>')[0]
#com = com_line.split('action_input=')[1].replace('<|im_end|>','').replace("}","").replace("]","").replace("'","")
print(com)
except Exception as e:
pass
fn="NONE"
if 'CREATE_FILE' in fn:
print('CREATE_FILE called')
in_data[1]=com
out_o =generate(prompt,history,mod=mod,tok=10000,seed=seed,role="CREATE_FILE",data=in_data)
out_w=list(out_o)
ret1,ret2 = parse_json(out_w[2].split('<|im_end|>')[0])
build_space(out_w[0],ret1,ret2)
elif 'IMAGE' in fn:
print('IMAGE called')
#out_im=gen_im(prompt,seed)
#yield [{'role':'assistant','content': out_im}]
elif 'SEARCH' in fn:
print('SEARCH called')
elif 'COMPLETE' in fn:
print('COMPLETE')
go=False
break
elif 'NONE' in fn:
print('ERROR ACTION NOT FOUND')
history+=[{'role':'system','content':f'observation:The last thing we attempted resulted in an error, check formatting on the tool call'}]
else:pass;seed = random.randint(1,9999999999999)
with gr.Blocks() as ux:
with gr.Row():
with gr.Column():
gr.HTML("""<center><div style='font-size:xx-large;font-weight:900;'>Chatbo</div>""")
chatbot=gr.Chatbot(type='messages',show_label=False, show_share_button=False, show_copy_button=True, layout="panel")
prompt=gr.MultimodalTextbox(label="Prompt",file_count="multiple", file_types=["image"])
mod_c=gr.Dropdown(choices=[n['name'] for n in clients],value='Qwen/Qwen2.5-Coder-32B-Instruct',type='index')
#chat_ux=gr.ChatInterface(fn=agent,chatbot=chatbot,additional_inputs=[mod_c]).load()
#chat_ux.additional_inputs=[mod_c]
#chat_ux.load()
with gr.Row():
submit_b = gr.Button()
stop_b = gr.Button("Stop")
clear = gr.ClearButton([chatbot,prompt])
with gr.Row(visible=False):
stt=gr.Textbox()
with gr.Column():
file_name=gr.Textbox(label="File Name")
file_btn=gr.Button("Load Files")
file_json=gr.JSON()
sub_b = submit_b.click(agent, [prompt,chatbot,mod_c],chatbot)
sub_p = prompt.submit(agent, [prompt,chatbot,mod_c],chatbot)
stop_b.click(None,None,None, cancels=[sub_b,sub_p])
ux.queue(default_concurrency_limit=20).launch(max_threads=40)