Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,732 Bytes
62cc7ef 12646d5 8c988dd c574468 62cc7ef 8c988dd 62cc7ef 12646d5 62cc7ef 12646d5 62cc7ef 8c988dd 12646d5 62cc7ef cd05b35 62cc7ef 12646d5 cd05b35 12646d5 62cc7ef 12646d5 cd05b35 12646d5 843171c 8c988dd 62cc7ef 8c988dd 0024d74 8c988dd cd05b35 8c988dd 12646d5 8c988dd 12646d5 8c988dd 12646d5 8c988dd 12646d5 8c988dd 62cc7ef 8c988dd 62cc7ef cd05b35 62cc7ef 8c988dd 62cc7ef 24438e9 8c988dd 62cc7ef cd05b35 8c988dd 62cc7ef 843171c 8c988dd 62cc7ef 843171c 8c988dd 62cc7ef 8c988dd 62cc7ef 8c988dd 62cc7ef 843171c 8c988dd 62cc7ef 843171c 8c988dd 62cc7ef 8c988dd 62cc7ef 843171c 8c988dd 62cc7ef 843171c 8c988dd 62cc7ef 843171c 62cc7ef 8c988dd 62cc7ef db09a78 62cc7ef db09a78 843171c 8c988dd 843171c 8c988dd db09a78 62cc7ef 8c988dd 62cc7ef cd05b35 62cc7ef a9de8a3 62cc7ef a9de8a3 62cc7ef a9de8a3 c574468 12646d5 c574468 a9de8a3 62cc7ef cd05b35 62cc7ef 12646d5 62cc7ef 12646d5 62cc7ef cd05b35 62cc7ef 12646d5 62cc7ef 12646d5 62cc7ef 12646d5 cd05b35 62cc7ef cd05b35 12646d5 62cc7ef 12646d5 62cc7ef cd05b35 62cc7ef cd05b35 12646d5 62cc7ef 12646d5 62cc7ef cd05b35 62cc7ef cd05b35 62cc7ef 12646d5 62cc7ef 12646d5 62cc7ef 12646d5 e344a51 cd05b35 62cc7ef 12646d5 62cc7ef 12646d5 62cc7ef c574468 62cc7ef e344a51 62cc7ef 12646d5 62cc7ef 3766dbe 62cc7ef 8c988dd 62cc7ef c1ebc5b 62cc7ef c574468 62cc7ef c574468 12646d5 8c988dd 62cc7ef e64952a 62cc7ef f3ff2c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
prod = True
port = 8080
show_options = False
if prod:
port = 8081
# show_options = False
import os
import random
import time
import gradio as gr
import numpy as np
# import spaces
import imageio
import gc
import torch
from PIL import Image
from huggingface_hub import HfApi
from diffusers import (
ControlNetModel,
DPMSolverMultistepScheduler,
StableDiffusionControlNetPipeline,
# AutoencoderKL,
)
from controlnet_aux_local import NormalBaeDetector
MAX_SEED = np.iinfo(np.int32).max
API_KEY = os.environ.get("API_KEY", None)
api = HfApi()
# os.environ['HF_HOME'] = '/data/.huggingface'
print("CUDA version:", torch.version.cuda)
print("loading everything")
compiled = False
class Preprocessor:
MODEL_ID = "lllyasviel/Annotators"
def __init__(self):
self.model = None
self.name = ""
def load(self, name: str) -> None:
if name == self.name:
return
elif name == "NormalBae":
print("Loading NormalBae")
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda")
torch.cuda.empty_cache()
self.name = name
else:
raise ValueError
return
def __call__(self, image: Image.Image, **kwargs) -> Image.Image:
return self.model(image, **kwargs)
if gr.NO_RELOAD:
# Controlnet Normal
model_id = "lllyasviel/control_v11p_sd15_normalbae"
print("initializing controlnet")
controlnet = ControlNetModel.from_pretrained(
model_id,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to("cuda")
# Scheduler
scheduler = DPMSolverMultistepScheduler.from_pretrained(
"ashllay/stable-diffusion-v1-5-archive",
solver_order=2,
subfolder="scheduler",
use_karras_sigmas=True,
final_sigmas_type="sigma_min",
algorithm_type="sde-dpmsolver++",
prediction_type="epsilon",
thresholding=False,
denoise_final=True,
device_map="cuda",
torch_dtype=torch.float16,
)
# Stable Diffusion Pipeline URL
# base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
# vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
# print('loading vae')
# vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
# vae.to(memory_format=torch.channels_last)
print('loading pipe')
pipe = StableDiffusionControlNetPipeline.from_single_file(
base_model_url,
safety_checker=None,
controlnet=controlnet,
scheduler=scheduler,
# vae=vae,
torch_dtype=torch.float16,
).to("cuda")
print("loading preprocessor")
preprocessor = Preprocessor()
preprocessor.load("NormalBae")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",)
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
pipe.to("cuda")
print("---------------Loaded controlnet pipeline---------------")
torch.cuda.empty_cache()
gc.collect()
print(f"CUDA memory allocated: {torch.cuda.max_memory_allocated(device='cuda') / 1e9:.2f} GB")
print("Model Compiled!")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_additional_prompt():
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]
def get_prompt(prompt, additional_prompt):
interior = "design-style interior designed (interior space),tungsten white balance,captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length"
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
randomize = get_additional_prompt()
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
# ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
if prompt == "":
girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2, ahegao2]
prompts_nsfw = [abg, shibari2, ahegao2]
prompt = f"{random.choice(girls)}"
prompt = f"boho chic"
# print(f"-------------{preset}-------------")
else:
prompt = f"Photo from Pinterest of {prompt}{interior}"
# prompt = default2
return f"{prompt} f{additional_prompt}"
style_list = [
{
"name": "None",
"prompt": ""
},
{
"name": "Minimalistic",
"prompt": "Minimalist interior design,clean lines,neutral colors,uncluttered space,functional furniture,lots of natural light"
},
{
"name": "Boho",
"prompt": "Bohemian chic interior,eclectic mix of patterns and textures,vintage furniture,plants,woven textiles,warm earthy colors"
},
{
"name": "Farmhouse",
"prompt": "Modern farmhouse interior,rustic wood elements,shiplap walls,neutral color palette,industrial accents,cozy textiles"
},
{
"name": "Saudi Prince",
"prompt": "Opulent gold interior,luxurious ornate furniture,crystal chandeliers,rich fabrics,marble floors,intricate Arabic patterns"
},
{
"name": "Neoclassical",
"prompt": "Neoclassical interior design,elegant columns,ornate moldings,symmetrical layout,refined furniture,muted color palette"
},
{
"name": "Eclectic",
"prompt": "Eclectic interior design,mix of styles and eras,bold color combinations,diverse furniture pieces,unique art objects"
},
{
"name": "Parisian",
"prompt": "Parisian apartment interior,all-white color scheme,ornate moldings,herringbone wood floors,elegant furniture,large windows"
},
{
"name": "Hollywood",
"prompt": "Hollywood Regency interior,glamorous and luxurious,bold colors,mirrored surfaces,velvet upholstery,gold accents"
},
{
"name": "Scandinavian",
"prompt": "Scandinavian interior design,light wood tones,white walls,minimalist furniture,cozy textiles,hygge atmosphere"
},
{
"name": "Beach",
"prompt": "Coastal beach house interior,light blue and white color scheme,weathered wood,nautical accents,sheer curtains,ocean view"
},
{
"name": "Japanese",
"prompt": "Traditional Japanese interior,tatami mats,shoji screens,low furniture,zen garden view,minimalist decor,natural materials"
},
{
"name": "Midcentury Modern",
"prompt": "Mid-century modern interior,1950s-60s style furniture,organic shapes,warm wood tones,bold accent colors,large windows"
},
{
"name": "Retro Futurism",
"prompt": "Neon (atompunk world) retro cyberpunk background",
},
{
"name": "Texan",
"prompt": "Western cowboy interior,rustic wood beams,leather furniture,cowhide rugs,antler chandeliers,southwestern patterns"
},
{
"name": "Matrix",
"prompt": "Futuristic cyberpunk interior,neon accent lighting,holographic plants,sleek black surfaces,advanced gaming setup,transparent screens,Blade Runner inspired decor,high-tech minimalist furniture"
}
]
styles = {k["name"]: (k["prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
def apply_style(style_name):
if style_name in styles:
p = styles.get(style_name, "none")
return p
css = """
h1, h2, h3 {
text-align: center;
display: block;
}
footer {
visibility: hidden;
}
.gradio-container {
max-width: 1100px !important;
}
.gr-image {
display: flex;
justify-content: center;
align-items: center;
width: 100%;
height: 512px;
overflow: hidden;
}
.gr-image img {
width: 100%;
height: 100%;
object-fit: cover;
object-position: center;
}
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
#############################################################################
with gr.Row():
with gr.Accordion("Advanced options", open=show_options, visible=show_options):
num_images = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1
)
image_resolution = gr.Slider(
label="Image resolution",
minimum=256,
maximum=1024,
value=512,
step=256,
)
preprocess_resolution = gr.Slider(
label="Preprocess resolution",
minimum=128,
maximum=1024,
value=512,
step=1,
)
num_steps = gr.Slider(
label="Number of steps", minimum=1, maximum=100, value=15, step=1
) # 20/4.5 or 12 without lora, 4 with lora
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
) # 5 without lora, 2 with lora
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
a_prompt = gr.Textbox(
label="Additional prompt",
value = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance"
)
n_prompt = gr.Textbox(
label="Negative prompt",
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
)
#############################################################################
# input text
with gr.Column():
prompt = gr.Textbox(
label="Custom Design",
placeholder="Enter a description (optional)",
)
# design options
with gr.Row(visible=True):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value="None",
label="Design Styles",
)
# input image
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=300):
image = gr.Image(
label="Input",
sources=["upload"],
show_label=True,
mirror_webcam=True,
type="pil",
)
# run button
with gr.Column():
run_button = gr.Button(value="Use this one", size="lg", visible=False)
# output image
with gr.Column(scale=1, min_width=300):
result = gr.Image(
label="Output",
interactive=False,
type="pil",
show_share_button= False,
)
# Use this image button
with gr.Column():
use_ai_button = gr.Button(value="Use this one", size="lg", visible=False)
config = [
image,
style_selection,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
]
with gr.Row():
helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
# image processing
@gr.on(triggers=[image.upload, prompt.submit, run_button.click], inputs=config, outputs=result, show_progress="minimal")
def auto_process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
# AI image processing
@gr.on(triggers=[use_ai_button.click], inputs=[result] + config, outputs=[image, result], show_progress="minimal")
def submit(previous_result, image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
# First, yield the previous result to update the input image immediately
yield previous_result, gr.update()
# Then, process the new input image
new_result = process_image(previous_result, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
# Finally, yield the new result
yield previous_result, new_result
# Turn off buttons when processing
@gr.on(triggers=[image.upload, use_ai_button.click, run_button.click], inputs=None, outputs=[run_button, use_ai_button], show_progress="hidden")
def turn_buttons_off():
return gr.update(visible=False), gr.update(visible=False)
# Turn on buttons when processing is complete
@gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button], show_progress="hidden")
def turn_buttons_on():
return gr.update(visible=True), gr.update(visible=True)
# @spaces.GPU(duration=12)
@torch.inference_mode()
def process_image(
image,
style_selection,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
):
# torch.cuda.synchronize()
preprocess_start = time.time()
print("processing image")
seed = random.randint(0, MAX_SEED)
generator = torch.cuda.manual_seed(seed)
preprocessor.load("NormalBae")
control_image = preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
preprocess_time = time.time() - preprocess_start
if style_selection is not None or style_selection != "None":
prompt = "Photo from Pinterest of " + apply_style(style_selection) + " " + prompt + "," + a_prompt
else:
prompt=str(get_prompt(prompt))
negative_prompt=str(n_prompt)
print(prompt)
print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")
start = time.time()
results = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images,
num_inference_steps=num_steps,
generator=generator,
image=control_image,
).images[0]
print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
# torch.cuda.synchronize()
torch.cuda.empty_cache()
# # upload block
# timestamp = int(time.time())
# img_path = f"{timestamp}.jpg"
# results_path = f"{timestamp}_out.jpg"
# imageio.imsave(img_path, image)
# imageio.imsave(results_path, results)
# api.upload_file(
# path_or_fileobj=img_path,
# path_in_repo=img_path,
# repo_id="broyang/interior-ai-outputs",
# repo_type="dataset",
# token=API_KEY,
# run_as_future=True,
# )
# api.upload_file(
# path_or_fileobj=results_path,
# path_in_repo=results_path,
# repo_id="broyang/interior-ai-outputs",
# repo_type="dataset",
# token=API_KEY,
# run_as_future=True,
# )
return results
if prod:
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
else:
demo.queue(api_open=False).launch(show_api=False) |