File size: 19,732 Bytes
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
12646d5
8c988dd
c574468
62cc7ef
 
8c988dd
62cc7ef
 
 
 
12646d5
62cc7ef
12646d5
 
62cc7ef
 
8c988dd
12646d5
62cc7ef
 
cd05b35
62cc7ef
 
12646d5
 
cd05b35
12646d5
 
 
62cc7ef
12646d5
 
 
 
 
 
 
 
 
 
 
cd05b35
12646d5
 
843171c
8c988dd
 
 
 
 
 
 
 
 
62cc7ef
8c988dd
 
0024d74
8c988dd
 
 
 
 
 
 
 
 
 
 
cd05b35
8c988dd
 
 
 
12646d5
8c988dd
 
 
12646d5
8c988dd
 
 
 
 
 
 
 
 
12646d5
8c988dd
 
 
 
 
 
 
 
 
 
 
 
 
 
12646d5
8c988dd
 
 
 
 
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c988dd
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd05b35
62cc7ef
 
8c988dd
62cc7ef
 
 
 
 
 
 
 
 
24438e9
8c988dd
62cc7ef
 
cd05b35
8c988dd
62cc7ef
 
843171c
8c988dd
62cc7ef
 
843171c
8c988dd
62cc7ef
 
 
8c988dd
62cc7ef
 
 
8c988dd
62cc7ef
 
843171c
8c988dd
62cc7ef
 
843171c
8c988dd
62cc7ef
 
 
8c988dd
62cc7ef
 
843171c
8c988dd
62cc7ef
 
843171c
8c988dd
62cc7ef
843171c
62cc7ef
8c988dd
62cc7ef
 
db09a78
62cc7ef
 
db09a78
843171c
8c988dd
843171c
 
 
8c988dd
db09a78
 
62cc7ef
 
 
 
 
 
8c988dd
62cc7ef
cd05b35
 
62cc7ef
a9de8a3
62cc7ef
a9de8a3
62cc7ef
a9de8a3
 
 
c574468
12646d5
c574468
a9de8a3
 
 
 
 
 
 
 
 
 
 
 
 
62cc7ef
 
 
 
cd05b35
62cc7ef
 
 
 
 
 
 
 
12646d5
62cc7ef
 
 
 
 
 
12646d5
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
cd05b35
62cc7ef
 
 
 
 
 
12646d5
62cc7ef
 
12646d5
 
62cc7ef
12646d5
cd05b35
 
62cc7ef
 
 
 
 
 
 
cd05b35
12646d5
 
62cc7ef
 
 
 
 
12646d5
62cc7ef
cd05b35
62cc7ef
cd05b35
 
12646d5
62cc7ef
 
 
12646d5
62cc7ef
 
cd05b35
62cc7ef
cd05b35
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
12646d5
62cc7ef
 
12646d5
62cc7ef
 
 
 
12646d5
 
e344a51
 
 
 
 
 
 
 
cd05b35
62cc7ef
 
 
 
12646d5
62cc7ef
 
 
 
 
12646d5
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
c574468
62cc7ef
 
e344a51
62cc7ef
 
12646d5
62cc7ef
 
 
 
 
 
 
3766dbe
62cc7ef
8c988dd
62cc7ef
 
c1ebc5b
62cc7ef
c574468
 
 
 
 
 
 
 
 
62cc7ef
c574468
12646d5
8c988dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62cc7ef
e64952a
62cc7ef
 
 
f3ff2c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
prod = True
port = 8080
show_options = False
if prod:
    port = 8081
    # show_options = False

import os
import random
import time
import gradio as gr
import numpy as np
# import spaces
import imageio
import gc
import torch
from PIL import Image
from huggingface_hub import HfApi
from diffusers import (
    ControlNetModel,
    DPMSolverMultistepScheduler,
    StableDiffusionControlNetPipeline,
    # AutoencoderKL,
)
from controlnet_aux_local import NormalBaeDetector

MAX_SEED = np.iinfo(np.int32).max
API_KEY = os.environ.get("API_KEY", None)
api = HfApi()
# os.environ['HF_HOME'] = '/data/.huggingface'

print("CUDA version:", torch.version.cuda)
print("loading everything")
compiled = False

class Preprocessor:
    MODEL_ID = "lllyasviel/Annotators"

    def __init__(self):
        self.model = None
        self.name = ""

    def load(self, name: str) -> None:
        if name == self.name:
            return
        elif name == "NormalBae":
            print("Loading NormalBae")
            self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda")
            torch.cuda.empty_cache()
            self.name = name
        else:
            raise ValueError
        return

    def __call__(self, image: Image.Image, **kwargs) -> Image.Image:
        return self.model(image, **kwargs)

if gr.NO_RELOAD:
    # Controlnet Normal
    model_id = "lllyasviel/control_v11p_sd15_normalbae"
    print("initializing controlnet")
    controlnet = ControlNetModel.from_pretrained(
        model_id,
        torch_dtype=torch.float16,
        attn_implementation="flash_attention_2",
    ).to("cuda")

    # Scheduler
    scheduler = DPMSolverMultistepScheduler.from_pretrained(
        "ashllay/stable-diffusion-v1-5-archive",
        solver_order=2,
        subfolder="scheduler",
        use_karras_sigmas=True,
        final_sigmas_type="sigma_min",
        algorithm_type="sde-dpmsolver++",
        prediction_type="epsilon",
        thresholding=False,
        denoise_final=True,
        device_map="cuda",
        torch_dtype=torch.float16,
    )

    # Stable Diffusion Pipeline URL
    # base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
    base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
    # vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"

    # print('loading vae')
    # vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
    # vae.to(memory_format=torch.channels_last) 

    print('loading pipe')
    pipe = StableDiffusionControlNetPipeline.from_single_file(
        base_model_url,
        safety_checker=None,
        controlnet=controlnet,
        scheduler=scheduler,
        # vae=vae,
        torch_dtype=torch.float16,
    ).to("cuda")

    print("loading preprocessor")
    preprocessor = Preprocessor()
    preprocessor.load("NormalBae")
    # pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",)
    # pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
    # pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
    # pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
    # pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
    # pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
    # pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
    # pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
    # pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
    # pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
    pipe.to("cuda")

    print("---------------Loaded controlnet pipeline---------------") 
    torch.cuda.empty_cache()
    gc.collect()
    print(f"CUDA memory allocated: {torch.cuda.max_memory_allocated(device='cuda') / 1e9:.2f} GB")
    print("Model Compiled!")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def get_additional_prompt():
    prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
    bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
    accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
    return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
    # outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]

def get_prompt(prompt, additional_prompt):
    interior = "design-style interior designed (interior space),tungsten white balance,captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length"
    default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    randomize = get_additional_prompt()
    # nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    # bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
    lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
    pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
    bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
    # ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
    ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
    athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
    atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
    maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
    nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
    naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
    abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
    # shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
    shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
    
    if prompt == "":
        girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2, ahegao2]
        prompts_nsfw = [abg, shibari2, ahegao2]
        prompt = f"{random.choice(girls)}"
        prompt = f"boho chic"
        # print(f"-------------{preset}-------------")
    else:
        prompt = f"Photo from Pinterest of {prompt}{interior}"
        # prompt = default2
    return f"{prompt} f{additional_prompt}"

style_list = [
    {
        "name": "None",
        "prompt": ""
    },
    {
        "name": "Minimalistic",
        "prompt": "Minimalist interior design,clean lines,neutral colors,uncluttered space,functional furniture,lots of natural light"
    },
    {
        "name": "Boho",
        "prompt": "Bohemian chic interior,eclectic mix of patterns and textures,vintage furniture,plants,woven textiles,warm earthy colors"
    },
    {
        "name": "Farmhouse",
        "prompt": "Modern farmhouse interior,rustic wood elements,shiplap walls,neutral color palette,industrial accents,cozy textiles"
    },
    {
        "name": "Saudi Prince",
        "prompt": "Opulent gold interior,luxurious ornate furniture,crystal chandeliers,rich fabrics,marble floors,intricate Arabic patterns"
    },
    {
        "name": "Neoclassical",
        "prompt": "Neoclassical interior design,elegant columns,ornate moldings,symmetrical layout,refined furniture,muted color palette"
    },
    {
        "name": "Eclectic",
        "prompt": "Eclectic interior design,mix of styles and eras,bold color combinations,diverse furniture pieces,unique art objects"
    },
    {
        "name": "Parisian",
        "prompt": "Parisian apartment interior,all-white color scheme,ornate moldings,herringbone wood floors,elegant furniture,large windows"
    },
    {
        "name": "Hollywood",
        "prompt": "Hollywood Regency interior,glamorous and luxurious,bold colors,mirrored surfaces,velvet upholstery,gold accents"
    },
    {
        "name": "Scandinavian",
        "prompt": "Scandinavian interior design,light wood tones,white walls,minimalist furniture,cozy textiles,hygge atmosphere"
    },
    {
        "name": "Beach",
        "prompt": "Coastal beach house interior,light blue and white color scheme,weathered wood,nautical accents,sheer curtains,ocean view"
    },
    {
        "name": "Japanese",
        "prompt": "Traditional Japanese interior,tatami mats,shoji screens,low furniture,zen garden view,minimalist decor,natural materials"
    },
    { 
        "name": "Midcentury Modern",
        "prompt": "Mid-century modern interior,1950s-60s style furniture,organic shapes,warm wood tones,bold accent colors,large windows"
    },
    {
        "name": "Retro Futurism",
        "prompt": "Neon (atompunk world) retro cyberpunk background",
    },
    {
        "name": "Texan",
        "prompt": "Western cowboy interior,rustic wood beams,leather furniture,cowhide rugs,antler chandeliers,southwestern patterns"
    },
    {
        "name": "Matrix",
        "prompt": "Futuristic cyberpunk interior,neon accent lighting,holographic plants,sleek black surfaces,advanced gaming setup,transparent screens,Blade Runner inspired decor,high-tech minimalist furniture"
    }
] 

styles = {k["name"]: (k["prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())

def apply_style(style_name):
    if style_name in styles:
        p = styles.get(style_name, "none")
    return p

    
css = """
h1, h2, h3 {
    text-align: center;
    display: block;
}
footer {
    visibility: hidden;
}
.gradio-container {
    max-width: 1100px !important;
}
.gr-image {
    display: flex;
    justify-content: center; 
    align-items: center;
    width: 100%;
    height: 512px;
    overflow: hidden;
}
.gr-image img {
    width: 100%;
    height: 100%; 
    object-fit: cover;
    object-position: center;
}
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
    #############################################################################
    with gr.Row():
        with gr.Accordion("Advanced options", open=show_options, visible=show_options):
            num_images = gr.Slider(
                label="Images", minimum=1, maximum=4, value=1, step=1
            )
            image_resolution = gr.Slider(
                label="Image resolution",
                minimum=256,
                maximum=1024,
                value=512,
                step=256,
            )
            preprocess_resolution = gr.Slider(
                label="Preprocess resolution",
                minimum=128,
                maximum=1024,
                value=512,
                step=1,
            )
            num_steps = gr.Slider(
                label="Number of steps", minimum=1, maximum=100, value=15, step=1
            )  # 20/4.5 or 12 without lora, 4 with lora
            guidance_scale = gr.Slider(
                label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
            )  # 5 without lora, 2 with lora
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            a_prompt = gr.Textbox(
                label="Additional prompt",
                value = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance"
            )
            n_prompt = gr.Textbox(
                label="Negative prompt",
                value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
            )
    #############################################################################
    # input text
    with gr.Column():
        prompt = gr.Textbox(
            label="Custom Design",
            placeholder="Enter a description (optional)",
        )
    # design options
    with gr.Row(visible=True):
        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value="None",
            label="Design Styles",
        )
    # input image
    with gr.Row(equal_height=True):
        with gr.Column(scale=1, min_width=300):
            image = gr.Image(
                label="Input",
                sources=["upload"],
                show_label=True,
                mirror_webcam=True,
                type="pil",
            )
            # run button
            with gr.Column():
                run_button = gr.Button(value="Use this one", size="lg", visible=False)
        # output image
        with gr.Column(scale=1, min_width=300):
            result = gr.Image(  
                label="Output",
                interactive=False,
                type="pil",
                show_share_button= False,
            )
            # Use this image button
            with gr.Column():
                use_ai_button = gr.Button(value="Use this one", size="lg", visible=False)
    config = [
        image,
        style_selection,
        prompt,
        a_prompt,
        n_prompt,
        num_images,
        image_resolution,
        preprocess_resolution,
        num_steps,
        guidance_scale,
        seed,
    ]
    
    with gr.Row():
        helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
    
    # image processing
    @gr.on(triggers=[image.upload, prompt.submit, run_button.click], inputs=config, outputs=result, show_progress="minimal")
    def auto_process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
        return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
    
    # AI image processing
    @gr.on(triggers=[use_ai_button.click], inputs=[result] + config, outputs=[image, result], show_progress="minimal")
    def submit(previous_result, image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
        # First, yield the previous result to update the input image immediately
        yield previous_result, gr.update()
        # Then, process the new input image
        new_result = process_image(previous_result, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
        # Finally, yield the new result
        yield previous_result, new_result

    # Turn off buttons when processing
    @gr.on(triggers=[image.upload, use_ai_button.click, run_button.click], inputs=None, outputs=[run_button, use_ai_button], show_progress="hidden")
    def turn_buttons_off():
        return gr.update(visible=False), gr.update(visible=False)
    
    # Turn on buttons when processing is complete
    @gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button], show_progress="hidden")
    def turn_buttons_on():
        return gr.update(visible=True), gr.update(visible=True)

# @spaces.GPU(duration=12)
@torch.inference_mode()
def process_image(
    image,
    style_selection,
    prompt,
    a_prompt,
    n_prompt,
    num_images,
    image_resolution,
    preprocess_resolution,
    num_steps,
    guidance_scale,
    seed,
):
    # torch.cuda.synchronize()
    preprocess_start = time.time()
    print("processing image")

    seed = random.randint(0, MAX_SEED)
    generator = torch.cuda.manual_seed(seed)
    preprocessor.load("NormalBae")
    control_image = preprocessor(
        image=image,
        image_resolution=image_resolution,
        detect_resolution=preprocess_resolution,
    )
    preprocess_time = time.time() - preprocess_start
    if style_selection is not None or style_selection != "None":
        prompt = "Photo from Pinterest of " + apply_style(style_selection) + " " + prompt + "," + a_prompt
    else:
        prompt=str(get_prompt(prompt))
    negative_prompt=str(n_prompt)
    print(prompt)
    print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")    
    start = time.time()
    results = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_images,
        num_inference_steps=num_steps,
        generator=generator,
        image=control_image,
    ).images[0]
    print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
    # torch.cuda.synchronize()
    torch.cuda.empty_cache()
    # # upload block
    # timestamp = int(time.time())
    # img_path = f"{timestamp}.jpg"
    # results_path = f"{timestamp}_out.jpg"
    # imageio.imsave(img_path, image)
    # imageio.imsave(results_path, results)
    # api.upload_file(
    #     path_or_fileobj=img_path,
    #     path_in_repo=img_path,
    #     repo_id="broyang/interior-ai-outputs",
    #     repo_type="dataset",
    #     token=API_KEY,
    #     run_as_future=True,
    # )
    # api.upload_file(
    #     path_or_fileobj=results_path,
    #     path_in_repo=results_path,
    #     repo_id="broyang/interior-ai-outputs",
    #     repo_type="dataset",
    #     token=API_KEY,
    #     run_as_future=True,
    # )
    return results

if prod:
    demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
else:
    demo.queue(api_open=False).launch(show_api=False)