Bobby
nice commit rebase
62cc7ef
raw
history blame
19.9 kB
prod = False
port = 8080
show_options = False
if prod:
port = 8081
# show_options = False
import gc
import os
import random
import time
import gradio as gr
import numpy as np
# import imageio
import torch
from diffusers import (
AutoencoderKL,
ControlNetModel,
DPMSolverMultistepScheduler,
StableDiffusionControlNetPipeline,
)
from diffusers.models.attention_processor import AttnProcessor2_0
from PIL import Image
from preprocess import Preprocessor
MAX_SEED = np.iinfo(np.int32).max
API_KEY = os.environ.get("API_KEY", None)
print("CUDA version:", torch.version.cuda)
print("loading pipe")
compiled = False
# api = HfApi()
import spaces
preprocessor = Preprocessor()
preprocessor.load("NormalBae")
if gr.NO_RELOAD:
torch.cuda.max_memory_allocated(device="cuda")
# Controlnet Normal
model_id = "lllyasviel/control_v11p_sd15_normalbae"
print("initializing controlnet")
controlnet = ControlNetModel.from_pretrained(
model_id,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to("cuda")
# Scheduler
scheduler = DPMSolverMultistepScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5",
solver_order=2,
subfolder="scheduler",
use_karras_sigmas=True,
final_sigmas_type="sigma_min",
algorithm_type="sde-dpmsolver++",
prediction_type="epsilon",
thresholding=False,
denoise_final=True,
device_map="cuda",
torch_dtype=torch.float16,
)
# Stable Diffusion Pipeline URL
# base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
vae.to(memory_format=torch.channels_last)
pipe = StableDiffusionControlNetPipeline.from_single_file(
base_model_url,
# safety_checker=None,
# load_safety_checker=True,
controlnet=controlnet,
scheduler=scheduler,
vae=vae,
torch_dtype=torch.float16,
)
pipe.load_textual_inversion(
"broyang/hentaidigitalart_v20",
weight_name="EasyNegativeV2.safetensors",
token="EasyNegativeV2",
)
pipe.load_textual_inversion(
"broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4"
)
pipe.load_textual_inversion(
"broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg"
)
pipe.load_textual_inversion(
"broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao"
)
pipe.load_textual_inversion(
"broyang/hentaidigitalart_v20",
weight_name="HDA_Bondage.pt",
token="HDA_Bondage",
)
pipe.load_textual_inversion(
"broyang/hentaidigitalart_v20",
weight_name="HDA_pet_play.pt",
token="HDA_pet_play",
)
pipe.load_textual_inversion(
"broyang/hentaidigitalart_v20",
weight_name="HDA_unconventional maid.pt",
token="HDA_unconventional_maid",
)
pipe.load_textual_inversion(
"broyang/hentaidigitalart_v20",
weight_name="HDA_NakedHoodie.pt",
token="HDA_NakedHoodie",
)
pipe.load_textual_inversion(
"broyang/hentaidigitalart_v20",
weight_name="HDA_NunDress.pt",
token="HDA_NunDress",
)
pipe.load_textual_inversion(
"broyang/hentaidigitalart_v20",
weight_name="HDA_Shibari.pt",
token="HDA_Shibari",
)
pipe.to("cuda")
# experimental speedup?
# pipe.compile()
# torch.cuda.empty_cache()
# gc.collect()
print("---------------Loaded controlnet pipeline---------------")
@spaces.GPU(duration=12)
def init(pipe):
pipe.enable_xformers_memory_efficient_attention()
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.unet.set_attn_processor(AttnProcessor2_0())
print("Model Compiled!")
init(pipe)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_additional_prompt():
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
bottom = [
"short skirt",
"athletic shorts",
"jean shorts",
"pleated skirt",
"short skirt",
"leggings",
"high-waisted shorts",
]
accessory = [
"knee-high boots",
"gloves",
"Thigh-high stockings",
"Garter belt",
"choker",
"necklace",
"headband",
"headphones",
]
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]
def get_prompt(prompt, additional_prompt):
interior = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning"
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
randomize = get_additional_prompt()
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
# ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
if prompt == "":
girls = [
randomize,
pet_play,
bondage,
lab_girl,
athleisure,
atompunk,
maid,
nundress,
naked_hoodie,
abg,
shibari2,
ahegao2,
]
prompts_nsfw = [abg, shibari2, ahegao2]
prompt = f"{random.choice(girls)}"
prompt = f"boho chic"
# print(f"-------------{preset}-------------")
else:
prompt = f"Photo from Pinterest of {prompt} {interior}"
# prompt = default2
return f"{prompt} f{additional_prompt}"
style_list = [
{"name": "None", "prompt": ""},
{"name": "Minimalistic", "prompt": "Minimalistic"},
{"name": "Boho Chic", "prompt": "boho chic"},
{
"name": "Saudi Prince Gold",
"prompt": "saudi prince gold",
},
{
"name": "Modern Farmhouse",
"prompt": "modern farmhouse",
},
{
"name": "Neoclassical",
"prompt": "Neoclassical",
},
{
"name": "Eclectic",
"prompt": "Eclectic",
},
{
"name": "Parisian White",
"prompt": "Parisian White",
},
{
"name": "Hollywood Glam",
"prompt": "Hollywood Glam",
},
{
"name": "Scandinavian",
"prompt": "Scandinavian",
},
{
"name": "Japanese",
"prompt": "Japanese",
},
{
"name": "Texas Cowboy",
"prompt": "Texas Cowboy",
},
{
"name": "Midcentury Modern",
"prompt": "Midcentury Modern",
},
{
"name": "Beach",
"prompt": "Beach",
},
{
"name": "The Matrix",
"prompt": "Neon (atompunk world) retro cyberpunk background",
},
]
styles = {k["name"]: (k["prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
def apply_style(style_name):
if style_name in styles:
p = styles.get(style_name, "boho chic")
return p
css = """
h1 {
text-align: center;
display:block;
}
h2 {
text-align: center;
display:block;
}
h3 {
text-align: center;
display:block;
}
.gradio-container{max-width: 1200px !important}
footer {visibility: hidden}
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
#############################################################################
with gr.Row():
with gr.Accordion("Advanced options", open=show_options, visible=show_options):
num_images = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1
)
image_resolution = gr.Slider(
label="Image resolution",
minimum=256,
maximum=1024,
value=512,
step=256,
)
preprocess_resolution = gr.Slider(
label="Preprocess resolution",
minimum=128,
maximum=1024,
value=512,
step=1,
)
num_steps = gr.Slider(
label="Number of steps", minimum=1, maximum=100, value=15, step=1
) # 20/4.5 or 12 without lora, 4 with lora
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
) # 5 without lora, 2 with lora
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
a_prompt = gr.Textbox(
label="Additional prompt",
value="design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning",
)
n_prompt = gr.Textbox(
label="Negative prompt",
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
)
#############################################################################
# input text
with gr.Row():
gr.Text(
label="Interior Design Style Examples",
value="Eclectic, Maximalist, Bohemian, Scandinavian, Minimalist, Rustic, Modern Farmhouse, Contemporary, Luxury, Airbnb, Boho Chic, Midcentury Modern, Art Deco, Zen, Beach, Neoclassical, Industrial, Biophilic, Eco-friendly, Hollywood Glam, Parisian White, Saudi Prince Gold, French Country, Monster Energy Drink, Cyberpunk, Vaporwave, Baroque, etc.\n\nPro tip: add a color to customize it! You can also describe the furniture type.",
)
with gr.Column():
prompt = gr.Textbox(
label="Custom Prompt",
placeholder="boho chic",
)
with gr.Row(visible=True):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value="None",
label="Design Styles",
)
# input image
with gr.Row():
with gr.Column():
image = gr.Image(
label="Input",
sources=["upload"],
show_label=True,
mirror_webcam=True,
format="webp",
)
# run button
with gr.Column():
run_button = gr.Button(value="Use this one", size=["lg"], visible=False)
# output image
with gr.Column():
result = gr.Image(
label="Output",
interactive=False,
format="webp",
show_share_button=False,
)
# Use this image button
with gr.Column():
use_ai_button = gr.Button(
value="Use this one", size=["lg"], visible=False
)
config = [
image,
style_selection,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
]
with gr.Row():
helper_text = gr.Markdown(
"## Tap and hold (on mobile) to save the image.", visible=True
)
# image processing
@gr.on(
triggers=[image.upload, prompt.submit, run_button.click],
inputs=config,
outputs=result,
show_progress="minimal",
)
def auto_process_image(
image,
style_selection,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
progress=gr.Progress(track_tqdm=True),
):
return process_image(
image,
style_selection,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
)
# AI Image Processing
@gr.on(
triggers=[use_ai_button.click],
inputs=config,
outputs=result,
show_progress="minimal",
)
def submit(
image,
style_selection,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
progress=gr.Progress(track_tqdm=True),
):
return process_image(
image,
style_selection,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
)
# Change input to result
@gr.on(
triggers=[use_ai_button.click],
inputs=None,
outputs=image,
show_progress="hidden",
)
def update_input():
try:
print("Updating image to AI Temp Image")
ai_temp_image = Image.open("temp_image.jpg")
return ai_temp_image
except FileNotFoundError:
print("No AI Image Available")
return None
# Turn off buttons when processing
@gr.on(
triggers=[image.upload, use_ai_button.click, run_button.click],
inputs=None,
outputs=[run_button, use_ai_button],
show_progress="hidden",
)
def turn_buttons_off():
return gr.update(visible=False), gr.update(visible=False)
# Turn on buttons when processing is complete
@gr.on(
triggers=[result.change],
inputs=None,
outputs=[use_ai_button, run_button],
show_progress="hidden",
)
def turn_buttons_on():
return gr.update(visible=True), gr.update(visible=True)
@spaces.GPU(duration=10)
@torch.inference_mode()
def process_image(
image,
style_selection,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
progress=gr.Progress(track_tqdm=True),
):
torch.cuda.synchronize()
preprocess_start = time.time()
print("processing image")
preprocessor.load("NormalBae")
# preprocessor.load("Canny") #20 steps, 9 guidance, 512, 512
global compiled
if not compiled:
print("Not Compiled")
compiled = True
seed = random.randint(0, MAX_SEED)
generator = torch.cuda.manual_seed(seed)
control_image = preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
preprocess_time = time.time() - preprocess_start
if style_selection is not None or style_selection != "None":
prompt = (
"Photo from Pinterest of "
+ apply_style(style_selection)
+ " "
+ prompt
+ " "
+ a_prompt
)
else:
prompt = str(get_prompt(prompt, a_prompt))
negative_prompt = str(n_prompt)
print(prompt)
start = time.time()
results = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images,
num_inference_steps=num_steps,
generator=generator,
image=control_image,
).images[0]
torch.cuda.synchronize()
torch.cuda.empty_cache()
print(
f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------"
)
print(
f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------"
)
# timestamp = int(time.time())
# if not os.path.exists("./outputs"):
# os.makedirs("./outputs")
# img_path = f"./{timestamp}.jpg"
# results_path = f"./{timestamp}_out_{prompt}.jpg"
# imageio.imsave(img_path, image)
# results.save(results_path)
results.save("temp_image.jpg")
# api.upload_file(
# path_or_fileobj=img_path,
# path_in_repo=img_path,
# repo_id="broyang/anime-ai-outputs",
# repo_type="dataset",
# token=API_KEY,
# run_as_future=True,
# )
# api.upload_file(
# path_or_fileobj=results_path,
# path_in_repo=results_path,
# repo_id="broyang/anime-ai-outputs",
# repo_type="dataset",
# token=API_KEY,
# run_as_future=True,
# )
return results
if prod:
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
else:
demo.queue(api_open=False).launch(show_api=False)