Spaces:
Running
on
Zero
Running
on
Zero
# import numpy as np | |
import PIL.Image | |
import torch | |
import gc | |
# from controlnet_aux_local import NormalBaeDetector#, CannyDetector | |
from controlnet_aux import NormalBaeDetector | |
# from controlnet_aux.util import HWC3 | |
# import cv2 | |
# from cv_utils import resize_image | |
class Preprocessor: | |
MODEL_ID = "lllyasviel/Annotators" | |
# def resize_image(input_image, resolution, interpolation=None): | |
# H, W, C = input_image.shape | |
# H = float(H) | |
# W = float(W) | |
# k = float(resolution) / max(H, W) | |
# H *= k | |
# W *= k | |
# H = int(np.round(H / 64.0)) * 64 | |
# W = int(np.round(W / 64.0)) * 64 | |
# if interpolation is None: | |
# interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA | |
# img = cv2.resize(input_image, (W, H), interpolation=interpolation) | |
# return img | |
def __init__(self): | |
self.model = None | |
self.name = "" | |
def load(self, name: str) -> None: | |
if name == self.name: | |
return | |
elif name == "NormalBae": | |
print("Loading NormalBae") | |
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda") | |
# elif name == "Canny": | |
# self.model = CannyDetector() | |
else: | |
raise ValueError | |
torch.cuda.empty_cache() | |
gc.collect() | |
self.name = name | |
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: | |
# if self.name == "Canny": | |
# if "detect_resolution" in kwargs: | |
# detect_resolution = kwargs.pop("detect_resolution") | |
# image = np.array(image) | |
# image = HWC3(image) | |
# image = resize_image(image, resolution=detect_resolution) | |
# image = self.model(image, **kwargs) | |
# return PIL.Image.fromarray(image) | |
# elif self.name == "Midas": | |
# detect_resolution = kwargs.pop("detect_resolution", 512) | |
# image_resolution = kwargs.pop("image_resolution", 512) | |
# image = np.array(image) | |
# image = HWC3(image) | |
# image = resize_image(image, resolution=detect_resolution) | |
# image = self.model(image, **kwargs) | |
# image = HWC3(image) | |
# image = resize_image(image, resolution=image_resolution) | |
# return PIL.Image.fromarray(image) | |
# else: | |
return self.model(image, **kwargs) | |