Bobby commited on
Commit
f1647cf
·
1 Parent(s): 4d4920b

hf hub download

Browse files
Files changed (2) hide show
  1. README.md +5 -9
  2. app.py +5 -5
README.md CHANGED
@@ -1,16 +1,12 @@
1
- ---
2
  title: Interior AI Designer
3
- emoji: 👀
4
- colorFrom: blue
5
- colorTo: pink
6
  sdk: gradio
7
  sdk_version: 4.37.2
8
  app_file: app.py
9
  header: mini
10
  theme: bethecloud/storj_theme
11
- pinned: false
12
  license: apache-2.0
13
- short_description: Ikea could never
14
- ---
15
-
16
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
1
  title: Interior AI Designer
2
+ emoji: 🏠
3
+ colorFrom: green
4
+ colorTo: blue
5
  sdk: gradio
6
  sdk_version: 4.37.2
7
  app_file: app.py
8
  header: mini
9
  theme: bethecloud/storj_theme
10
+ pinned: true
11
  license: apache-2.0
12
+ short_description: Ikea could never
 
 
 
app.py CHANGED
@@ -21,7 +21,7 @@ from diffusers import (
21
  StableDiffusionControlNetPipeline,
22
  # AutoencoderKL,
23
  )
24
- from huggingface_hub import cached_download, hf_hub_url
25
  from controlnet_aux_local import NormalBaeDetector
26
 
27
  MAX_SEED = np.iinfo(np.int32).max
@@ -56,7 +56,7 @@ class Preprocessor:
56
  return
57
  elif name == "NormalBae":
58
  print("Loading NormalBae")
59
- model_file = cached_download(hf_hub_url(self.MODEL_ID, filename="NormalBaeDetector.pth"))
60
  self.model = NormalBaeDetector.from_pretrained(model_file).to("cuda")
61
  torch.cuda.empty_cache()
62
  self.name = name
@@ -81,7 +81,7 @@ torch.cuda.max_memory_allocated(device="cuda")
81
  # Controlnet Normal
82
  model_id = "lllyasviel/control_v11p_sd15_normalbae"
83
  print("initializing controlnet")
84
- controlnet_file = cached_download(hf_hub_url(model_id, filename="diffusion_pytorch_model.safetensors"))
85
  controlnet = ControlNetModel.from_pretrained(
86
  controlnet_file,
87
  torch_dtype=torch.float16,
@@ -105,7 +105,7 @@ controlnet = ControlNetModel.from_pretrained(
105
 
106
  # Scheduler
107
  scheduler_repo = "runwayml/stable-diffusion-v1-5"
108
- scheduler_file = cached_download(hf_hub_url(scheduler_repo, filename="scheduler/scheduler_config.json", subfolder="scheduler"))
109
  scheduler = DPMSolverMultistepScheduler.from_pretrained(
110
  scheduler_file,
111
  solver_order=2,
@@ -142,7 +142,7 @@ vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/v
142
 
143
  # Stable Diffusion Pipeline
144
  base_model_repo = "Lykon/AbsoluteReality"
145
- base_model_file = cached_download(hf_hub_url(base_model_repo, filename="AbsoluteReality_1.8.1_pruned.safetensors"))
146
 
147
  print('loading pipe')
148
  pipe = StableDiffusionControlNetPipeline.from_single_file(
 
21
  StableDiffusionControlNetPipeline,
22
  # AutoencoderKL,
23
  )
24
+ from huggingface_hub import hf_hub_download, hf_hub_url
25
  from controlnet_aux_local import NormalBaeDetector
26
 
27
  MAX_SEED = np.iinfo(np.int32).max
 
56
  return
57
  elif name == "NormalBae":
58
  print("Loading NormalBae")
59
+ model_file = hf_hub_download(self.MODEL_ID, filename="NormalBaeDetector.pth")
60
  self.model = NormalBaeDetector.from_pretrained(model_file).to("cuda")
61
  torch.cuda.empty_cache()
62
  self.name = name
 
81
  # Controlnet Normal
82
  model_id = "lllyasviel/control_v11p_sd15_normalbae"
83
  print("initializing controlnet")
84
+ controlnet_file = hf_hub_download(model_id, filename="diffusion_pytorch_model.safetensors")
85
  controlnet = ControlNetModel.from_pretrained(
86
  controlnet_file,
87
  torch_dtype=torch.float16,
 
105
 
106
  # Scheduler
107
  scheduler_repo = "runwayml/stable-diffusion-v1-5"
108
+ scheduler_file = hf_hub_download(scheduler_repo, filename="scheduler/scheduler_config.json", subfolder="scheduler")
109
  scheduler = DPMSolverMultistepScheduler.from_pretrained(
110
  scheduler_file,
111
  solver_order=2,
 
142
 
143
  # Stable Diffusion Pipeline
144
  base_model_repo = "Lykon/AbsoluteReality"
145
+ base_model_file = hf_hub_download(base_model_repo, filename="AbsoluteReality_1.8.1_pruned.safetensors")
146
 
147
  print('loading pipe')
148
  pipe = StableDiffusionControlNetPipeline.from_single_file(