Update app.py
Browse files
app.py
CHANGED
@@ -119,19 +119,7 @@ def rag_chain(llm, prompt, db):
|
|
119 |
completion = rag_chain({"query": prompt})
|
120 |
return completion, rag_chain
|
121 |
|
122 |
-
def wandb_trace(rag_option, prompt, completion, chain, err_msg, start_time_ms, end_time_ms):
|
123 |
-
result = ""
|
124 |
-
generation_info = ""
|
125 |
-
llm_output = ""
|
126 |
-
|
127 |
-
if (rag_option == RAG_OFF):
|
128 |
-
if (completion.generations[0] != None and completion.generations[0][0] != None):
|
129 |
-
result = completion.generations[0][0].text
|
130 |
-
generation_info = completion.generations[0][0].generation_info
|
131 |
-
llm_output = completion.llm_output
|
132 |
-
else:
|
133 |
-
result = completion["result"]
|
134 |
-
|
135 |
wandb.init(project = "openai-llm-rag")
|
136 |
|
137 |
trace = Trace(
|
@@ -178,6 +166,9 @@ def invoke(openai_api_key, rag_option, prompt):
|
|
178 |
|
179 |
chain = None
|
180 |
completion = ""
|
|
|
|
|
|
|
181 |
err_msg = ""
|
182 |
|
183 |
try:
|
@@ -191,19 +182,25 @@ def invoke(openai_api_key, rag_option, prompt):
|
|
191 |
#document_storage_chroma(splits)
|
192 |
db = document_retrieval_chroma(llm, prompt)
|
193 |
completion, chain = rag_chain(llm, prompt, db)
|
|
|
194 |
elif (rag_option == RAG_MONGODB):
|
195 |
#splits = document_loading_splitting()
|
196 |
#document_storage_mongodb(splits)
|
197 |
db = document_retrieval_mongodb(llm, prompt)
|
198 |
completion, chain = rag_chain(llm, prompt, db)
|
|
|
199 |
else:
|
200 |
completion, chain = llm_chain(llm, prompt)
|
|
|
|
|
|
|
|
|
201 |
except Exception as e:
|
202 |
err_msg = e
|
203 |
raise gr.Error(e)
|
204 |
finally:
|
205 |
end_time_ms = round(time.time() * 1000)
|
206 |
-
wandb_trace(rag_option, prompt, completion, chain, err_msg, start_time_ms, end_time_ms)
|
207 |
return result
|
208 |
|
209 |
gr.close_all()
|
|
|
119 |
completion = rag_chain({"query": prompt})
|
120 |
return completion, rag_chain
|
121 |
|
122 |
+
def wandb_trace(rag_option, prompt, completion, result, generation_info, llm_output, chain, err_msg, start_time_ms, end_time_ms):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
wandb.init(project = "openai-llm-rag")
|
124 |
|
125 |
trace = Trace(
|
|
|
166 |
|
167 |
chain = None
|
168 |
completion = ""
|
169 |
+
result = ""
|
170 |
+
generation_info = ""
|
171 |
+
llm_output = ""
|
172 |
err_msg = ""
|
173 |
|
174 |
try:
|
|
|
182 |
#document_storage_chroma(splits)
|
183 |
db = document_retrieval_chroma(llm, prompt)
|
184 |
completion, chain = rag_chain(llm, prompt, db)
|
185 |
+
result = completion["result"]
|
186 |
elif (rag_option == RAG_MONGODB):
|
187 |
#splits = document_loading_splitting()
|
188 |
#document_storage_mongodb(splits)
|
189 |
db = document_retrieval_mongodb(llm, prompt)
|
190 |
completion, chain = rag_chain(llm, prompt, db)
|
191 |
+
result = completion["result"]
|
192 |
else:
|
193 |
completion, chain = llm_chain(llm, prompt)
|
194 |
+
if (completion.generations[0] != None and completion.generations[0][0] != None):
|
195 |
+
result = completion.generations[0][0].text
|
196 |
+
generation_info = completion.generations[0][0].generation_info
|
197 |
+
llm_output = completion.llm_output
|
198 |
except Exception as e:
|
199 |
err_msg = e
|
200 |
raise gr.Error(e)
|
201 |
finally:
|
202 |
end_time_ms = round(time.time() * 1000)
|
203 |
+
wandb_trace(rag_option, prompt, completion, result, generation_info, llm_output, chain, err_msg, start_time_ms, end_time_ms)
|
204 |
return result
|
205 |
|
206 |
gr.close_all()
|