bushra1dajam commited on
Commit
59078f3
·
verified ·
1 Parent(s): 90b2a10

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision.transforms as transforms
3
+ from torchvision.models import resnet50
4
+ from PIL import Image
5
+ import gradio as gr
6
+
7
+ # Load the pre-trained model (ResNet50)
8
+ model = resnet50(pretrained=True)
9
+ model.eval()
10
+
11
+ # Define the transforms
12
+ transform = transforms.Compose([
13
+ transforms.Resize((224, 224)), # Resize to the size expected by ResNet
14
+ transforms.ToTensor(),
15
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
16
+ ])
17
+
18
+ # Define the prediction function
19
+ def predict(image):
20
+ image = Image.fromarray(image.astype('uint8'), 'RGB')
21
+ image = transform(image).unsqueeze(0)
22
+ with torch.no_grad():
23
+ outputs = model(image)
24
+ _, predicted = torch.max(outputs, 1)
25
+ return predicted.item()
26
+
27
+ # Create and launch the Gradio interface
28
+ iface = gr.Interface(fn=predict, inputs="image", outputs="label")
29
+ iface.launch()