Spaces:
Sleeping
Sleeping
bushra1dajam
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
from torchvision.models import resnet50
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Load the pre-trained model (ResNet50)
|
8 |
+
model = resnet50(pretrained=True)
|
9 |
+
model.eval()
|
10 |
+
|
11 |
+
# Define the transforms
|
12 |
+
transform = transforms.Compose([
|
13 |
+
transforms.Resize((224, 224)), # Resize to the size expected by ResNet
|
14 |
+
transforms.ToTensor(),
|
15 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
16 |
+
])
|
17 |
+
|
18 |
+
# Define the prediction function
|
19 |
+
def predict(image):
|
20 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
21 |
+
image = transform(image).unsqueeze(0)
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(image)
|
24 |
+
_, predicted = torch.max(outputs, 1)
|
25 |
+
return predicted.item()
|
26 |
+
|
27 |
+
# Create and launch the Gradio interface
|
28 |
+
iface = gr.Interface(fn=predict, inputs="image", outputs="label")
|
29 |
+
iface.launch()
|