bushra1dajam commited on
Commit
96d27f3
·
verified ·
1 Parent(s): 5c592c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +217 -217
app.py CHANGED
@@ -1,218 +1,218 @@
1
- import torch
2
- import transformers
3
- from transformers import AutoTokenizer, AutoModel , AutoModelForCausalLM
4
- from transformers import AutoModelForSeq2SeqLM
5
- import pickle
6
- import numpy as np
7
- import pandas as pd
8
- import seaborn as sns
9
- import matplotlib.pyplot as plt
10
- import nltk
11
- from nltk.tokenize import word_tokenize
12
- import re
13
- import string
14
- from nltk.corpus import stopwords
15
- from tashaphyne.stemming import ArabicLightStemmer
16
- import pyarabic.araby as araby
17
- from sklearn.feature_extraction.text import TfidfVectorizer
18
- import streamlit as st
19
- nltk.download('punkt')
20
-
21
-
22
-
23
- with open('tfidf_vectorizer.pkl', 'rb') as f:
24
- vectorizer = pickle.load(f)
25
-
26
- with open('svm_model.pkl', 'rb') as f:
27
- model_classify = pickle.load(f)
28
-
29
-
30
- model = AutoModelForSeq2SeqLM.from_pretrained("bushra1dajam/AraBART")
31
- tokenizer = AutoTokenizer.from_pretrained('bushra1dajam/AraBART')
32
-
33
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
- model.to(device)
35
-
36
- def summarize_text(text):
37
- inputs = tokenizer("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
38
- inputs = {k: v.to(device) for k, v in inputs.items()}
39
-
40
- summary_ids = model.generate(
41
- inputs["input_ids"],
42
- max_length=512,
43
- num_beams=8,
44
- #no_repeat_ngram_size=4, # Prevents larger n-gram repetitions
45
- early_stopping=True)
46
- summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
47
- return summary
48
-
49
- def remove_numbers(text):
50
- cleaned_text = re.sub(r'\d+', '', text)
51
- return cleaned_text
52
-
53
- def Removing_non_arabic(text):
54
- text =re.sub(r'[^0-9\u0600-\u06ff\u0750-\u077f\ufb50-\ufbc1\ufbd3-\ufd3f\ufd50-\ufd8f\ufd50-\ufd8f\ufe70-\ufefc\uFDF0-\uFDFD.0-9٠-٩]+', ' ',text)
55
- return text
56
-
57
- nltk.download('stopwords')
58
- ara_punctuations = '''`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…“–ـ''' + string.punctuation
59
- stop_words = stopwords.words()
60
-
61
- def remove_punctuations(text):
62
- translator = str.maketrans('', '', ara_punctuations)
63
- text = text.translate(translator)
64
-
65
- return text
66
-
67
-
68
- def remove_tashkeel(text):
69
- text = text.strip()
70
- text = re.sub("[إأٱآا]", "ا", text)
71
- text = re.sub("ى", "ي", text)
72
- text = re.sub("ؤ", "ء", text)
73
- text = re.sub("ئ", "ء", text)
74
- text = re.sub("ة", "ه", text)
75
- noise = re.compile(""" ّ | # Tashdid
76
- َ | # Fatha
77
- ً | # Tanwin Fath
78
- ُ | # Damma
79
- ٌ | # Tanwin Damm
80
- ِ | # Kasra
81
- ٍ | # Tanwin Kasr
82
- ْ | # Sukun
83
- ـ # Tatwil/Kashida
84
- """, re.VERBOSE)
85
- text = re.sub(noise, '', text)
86
- text = re.sub(r'(.)\1+', r"\1\1", text)
87
- return araby.strip_tashkeel(text)
88
-
89
- arabic_stopwords = stopwords.words("arabic")
90
- def remove_stop_words(text):
91
- Text=[i for i in str(text).split() if i not in arabic_stopwords]
92
- return " ".join(Text)
93
-
94
- def tokenize_text(text):
95
- tokens = word_tokenize(text)
96
- return tokens
97
-
98
- def Arabic_Light_Stemmer(text):
99
-
100
- Arabic_Stemmer = ArabicLightStemmer()
101
- text=[Arabic_Stemmer.light_stem(y) for y in text]
102
-
103
- return " " .join(text)
104
-
105
- def preprocess_text(text):
106
- text = remove_numbers(text)
107
- text = Removing_non_arabic(text)
108
- text = remove_punctuations(text)
109
- text = remove_stop_words(text)
110
- text = remove_tashkeel(text)
111
- text = tokenize_text(text)
112
- text = Arabic_Light_Stemmer(text)
113
- return text
114
-
115
- class_mapping = {
116
- 0: "جنائية",
117
- 1: "احوال شخصية",
118
- 2: "عامة"
119
- }
120
- st.markdown("""
121
- <style>
122
- body {
123
- background-color: #f0f4f8;
124
- direction: rtl;
125
- font-family: 'Arial', sans-serif;
126
- }
127
-
128
- .logo-container {
129
- display: flex;
130
- justify-content: center;
131
- align-items: center;
132
- margin-bottom: 20px;
133
- }
134
-
135
- .stTextArea textarea, .stText {
136
- text-align: right;
137
- }
138
-
139
- .stButton>button {
140
- background-color: #3498db;
141
- color: white;
142
- font-family: 'Arial', sans-serif;
143
- }
144
-
145
- .stButton>button:hover {
146
- background-color: #2980b9;
147
- }
148
-
149
- h1, h2, h3, h4, h5, h6, .stSubheader {
150
- text-align: right;
151
- }
152
-
153
- .home-title {
154
- text-align: center;
155
- font-size: 40px;
156
- color: #3498db;
157
- }
158
-
159
- .home-description {
160
- text-align: center;
161
- font-size: 20px;
162
- color: #2c3e50;
163
- }
164
-
165
- .larger-text {
166
- font-size: 24px;
167
- color: #2c3e50;
168
- }
169
- </style>
170
- """, unsafe_allow_html=True)
171
-
172
-
173
- # Function for the Home Page
174
- def home_page():
175
- st.markdown('<h1 class="home-title">مرحبا بك في تطبيق وجيز</h1>', unsafe_allow_html=True)
176
- st.markdown('<p class="home-description">تطبيق وجيز يقدم لك خدمة التصنيف والملخص للنصوص القانونية. يمكنك إدخال النصوص هنا للحصول على تصنيف دقيق وملخص شامل.</p>', unsafe_allow_html=True)
177
-
178
-
179
- def main_page():
180
- st.title("صنف ولخص")
181
-
182
- # Input text area
183
- input_text = st.text_area("ادخل النص", "")
184
-
185
- if st.button('صنف ولخص'):
186
- if input_text:
187
- prepro = preprocess_text(input_text)
188
- features = vectorizer.transform([prepro])
189
- prediction = model_classify.predict(features)
190
- classifiy = prediction[0]
191
- classifiy_class = class_mapping.get(classifiy, "لم يتم التعرف")
192
-
193
- # Generate the summarized text
194
- summarized_text = summarize_text(input_text)
195
-
196
- st.markdown('<p class="larger-text">تصنيف القضية :</p>', unsafe_allow_html=True)
197
- st.write(classifiy_class)
198
-
199
- st.markdown('<p class="larger-text">ملخص للقضية :</p>', unsafe_allow_html=True)
200
- st.write(summarized_text)
201
-
202
- def app():
203
- # Sidebar navigation with logo inside the sidebar
204
- with st.sidebar:
205
- st.markdown('<div class="logo-container">', unsafe_allow_html=True)
206
- st.image("logo.png", width=200) # Make sure you have the logo file in your app folder
207
- st.markdown('</div>', unsafe_allow_html=True)
208
-
209
- st.header("تطييق وجيز")
210
- page_selection = st.selectbox("اختر صفحة", ["الرئيسية", " صنف ولخص !"])
211
-
212
- if page_selection == "الرئيسية":
213
- home_page()
214
- elif page_selection == " صنف ولخص !":
215
- main_page()
216
-
217
- if __name__ == "__main__":
218
  app()
 
1
+ import torch
2
+ import transformers
3
+ from transformers import AutoTokenizer, AutoModel , AutoModelForCausalLM
4
+ from transformers import AutoModelForSeq2SeqLM
5
+ import pickle
6
+ import numpy as np
7
+ import pandas as pd
8
+ import seaborn as sns
9
+ import matplotlib.pyplot as plt
10
+ import nltk
11
+ from nltk.tokenize import word_tokenize
12
+ import re
13
+ import string
14
+ from nltk.corpus import stopwords
15
+ from tashaphyne.stemming import ArabicLightStemmer
16
+ import pyarabic.araby as araby
17
+ from sklearn.feature_extraction.text import TfidfVectorizer
18
+ import streamlit as st
19
+ nltk.download('punkt')
20
+
21
+
22
+
23
+ with open('tfidf_vectorizer.pkl', 'rb') as f:
24
+ vectorizer = pickle.load(f)
25
+
26
+ with open('svm_model.pkl', 'rb') as f:
27
+ model_classify = pickle.load(f)
28
+
29
+
30
+ model = AutoModelForSeq2SeqLM.from_pretrained("bushra1dajam/Wajeez_model")
31
+ tokenizer = AutoTokenizer.from_pretrained('bushra1dajam/Wajeez_model')
32
+
33
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
+ model.to(device)
35
+
36
+ def summarize_text(text):
37
+ inputs = tokenizer("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
38
+ inputs = {k: v.to(device) for k, v in inputs.items()}
39
+
40
+ summary_ids = model.generate(
41
+ inputs["input_ids"],
42
+ max_length=512,
43
+ num_beams=8,
44
+ #no_repeat_ngram_size=4, # Prevents larger n-gram repetitions
45
+ early_stopping=True)
46
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
47
+ return summary
48
+
49
+ def remove_numbers(text):
50
+ cleaned_text = re.sub(r'\d+', '', text)
51
+ return cleaned_text
52
+
53
+ def Removing_non_arabic(text):
54
+ text =re.sub(r'[^0-9\u0600-\u06ff\u0750-\u077f\ufb50-\ufbc1\ufbd3-\ufd3f\ufd50-\ufd8f\ufd50-\ufd8f\ufe70-\ufefc\uFDF0-\uFDFD.0-9٠-٩]+', ' ',text)
55
+ return text
56
+
57
+ nltk.download('stopwords')
58
+ ara_punctuations = '''`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…“–ـ''' + string.punctuation
59
+ stop_words = stopwords.words()
60
+
61
+ def remove_punctuations(text):
62
+ translator = str.maketrans('', '', ara_punctuations)
63
+ text = text.translate(translator)
64
+
65
+ return text
66
+
67
+
68
+ def remove_tashkeel(text):
69
+ text = text.strip()
70
+ text = re.sub("[إأٱآا]", "ا", text)
71
+ text = re.sub("ى", "ي", text)
72
+ text = re.sub("ؤ", "ء", text)
73
+ text = re.sub("ئ", "ء", text)
74
+ text = re.sub("ة", "ه", text)
75
+ noise = re.compile(""" ّ | # Tashdid
76
+ َ | # Fatha
77
+ ً | # Tanwin Fath
78
+ ُ | # Damma
79
+ ٌ | # Tanwin Damm
80
+ ِ | # Kasra
81
+ ٍ | # Tanwin Kasr
82
+ ْ | # Sukun
83
+ ـ # Tatwil/Kashida
84
+ """, re.VERBOSE)
85
+ text = re.sub(noise, '', text)
86
+ text = re.sub(r'(.)\1+', r"\1\1", text)
87
+ return araby.strip_tashkeel(text)
88
+
89
+ arabic_stopwords = stopwords.words("arabic")
90
+ def remove_stop_words(text):
91
+ Text=[i for i in str(text).split() if i not in arabic_stopwords]
92
+ return " ".join(Text)
93
+
94
+ def tokenize_text(text):
95
+ tokens = word_tokenize(text)
96
+ return tokens
97
+
98
+ def Arabic_Light_Stemmer(text):
99
+
100
+ Arabic_Stemmer = ArabicLightStemmer()
101
+ text=[Arabic_Stemmer.light_stem(y) for y in text]
102
+
103
+ return " " .join(text)
104
+
105
+ def preprocess_text(text):
106
+ text = remove_numbers(text)
107
+ text = Removing_non_arabic(text)
108
+ text = remove_punctuations(text)
109
+ text = remove_stop_words(text)
110
+ text = remove_tashkeel(text)
111
+ text = tokenize_text(text)
112
+ text = Arabic_Light_Stemmer(text)
113
+ return text
114
+
115
+ class_mapping = {
116
+ 0: "جنائية",
117
+ 1: "احوال شخصية",
118
+ 2: "عامة"
119
+ }
120
+ st.markdown("""
121
+ <style>
122
+ body {
123
+ background-color: #f0f4f8;
124
+ direction: rtl;
125
+ font-family: 'Arial', sans-serif;
126
+ }
127
+
128
+ .logo-container {
129
+ display: flex;
130
+ justify-content: center;
131
+ align-items: center;
132
+ margin-bottom: 20px;
133
+ }
134
+
135
+ .stTextArea textarea, .stText {
136
+ text-align: right;
137
+ }
138
+
139
+ .stButton>button {
140
+ background-color: #3498db;
141
+ color: white;
142
+ font-family: 'Arial', sans-serif;
143
+ }
144
+
145
+ .stButton>button:hover {
146
+ background-color: #2980b9;
147
+ }
148
+
149
+ h1, h2, h3, h4, h5, h6, .stSubheader {
150
+ text-align: right;
151
+ }
152
+
153
+ .home-title {
154
+ text-align: center;
155
+ font-size: 40px;
156
+ color: #3498db;
157
+ }
158
+
159
+ .home-description {
160
+ text-align: center;
161
+ font-size: 20px;
162
+ color: #2c3e50;
163
+ }
164
+
165
+ .larger-text {
166
+ font-size: 24px;
167
+ color: #2c3e50;
168
+ }
169
+ </style>
170
+ """, unsafe_allow_html=True)
171
+
172
+
173
+ # Function for the Home Page
174
+ def home_page():
175
+ st.markdown('<h1 class="home-title">مرحبا بك في تطبيق وجيز</h1>', unsafe_allow_html=True)
176
+ st.markdown('<p class="home-description">تطبيق وجيز يقدم لك خدمة التصنيف والملخص للنصوص القانونية. يمكنك إدخال النصوص هنا للحصول على تصنيف دقيق وملخص شامل.</p>', unsafe_allow_html=True)
177
+
178
+
179
+ def main_page():
180
+ st.title("صنف ولخص")
181
+
182
+ # Input text area
183
+ input_text = st.text_area("ادخل النص", "")
184
+
185
+ if st.button('صنف ولخص'):
186
+ if input_text:
187
+ prepro = preprocess_text(input_text)
188
+ features = vectorizer.transform([prepro])
189
+ prediction = model_classify.predict(features)
190
+ classifiy = prediction[0]
191
+ classifiy_class = class_mapping.get(classifiy, "لم يتم التعرف")
192
+
193
+ # Generate the summarized text
194
+ summarized_text = summarize_text(input_text)
195
+
196
+ st.markdown('<p class="larger-text">تصنيف القضية :</p>', unsafe_allow_html=True)
197
+ st.write(classifiy_class)
198
+
199
+ st.markdown('<p class="larger-text">ملخص للقضية :</p>', unsafe_allow_html=True)
200
+ st.write(summarized_text)
201
+
202
+ def app():
203
+ # Sidebar navigation with logo inside the sidebar
204
+ with st.sidebar:
205
+ st.markdown('<div class="logo-container">', unsafe_allow_html=True)
206
+ st.image("logo.png", width=200) # Make sure you have the logo file in your app folder
207
+ st.markdown('</div>', unsafe_allow_html=True)
208
+
209
+ st.header("تطييق وجيز")
210
+ page_selection = st.selectbox("اختر صفحة", ["الرئيسية", " صنف ولخص !"])
211
+
212
+ if page_selection == "الرئيسية":
213
+ home_page()
214
+ elif page_selection == " صنف ولخص !":
215
+ main_page()
216
+
217
+ if __name__ == "__main__":
218
  app()