bushra1dajam commited on
Commit
ea88a50
ยท
verified ยท
1 Parent(s): a933190

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +218 -0
  2. logo.png +0 -0
  3. svm_model.pkl +3 -0
  4. tfidf_vectorizer.pkl +3 -0
app.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import transformers
3
+ from transformers import AutoTokenizer, AutoModel , AutoModelForCausalLM
4
+ from transformers import AutoModelForSeq2SeqLM
5
+ import pickle
6
+ import numpy as np
7
+ import pandas as pd
8
+ import seaborn as sns
9
+ import matplotlib.pyplot as plt
10
+ import nltk
11
+ from nltk.tokenize import word_tokenize
12
+ import re
13
+ import string
14
+ from nltk.corpus import stopwords
15
+ from tashaphyne.stemming import ArabicLightStemmer
16
+ import pyarabic.araby as araby
17
+ from sklearn.feature_extraction.text import TfidfVectorizer
18
+ import streamlit as st
19
+ nltk.download('punkt')
20
+
21
+
22
+
23
+ with open('tfidf_vectorizer.pkl', 'rb') as f:
24
+ vectorizer = pickle.load(f)
25
+
26
+ with open('svm_model.pkl', 'rb') as f:
27
+ model_classify = pickle.load(f)
28
+
29
+
30
+ model = AutoModelForSeq2SeqLM.from_pretrained("bushra1dajam/AraBART")
31
+ tokenizer = AutoTokenizer.from_pretrained('bushra1dajam/AraBART')
32
+
33
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
+ model.to(device)
35
+
36
+ def summarize_text(text):
37
+ inputs = tokenizer("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
38
+ inputs = {k: v.to(device) for k, v in inputs.items()}
39
+
40
+ summary_ids = model.generate(
41
+ inputs["input_ids"],
42
+ max_length=512,
43
+ num_beams=8,
44
+ #no_repeat_ngram_size=4, # Prevents larger n-gram repetitions
45
+ early_stopping=True)
46
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
47
+ return summary
48
+
49
+ def remove_numbers(text):
50
+ cleaned_text = re.sub(r'\d+', '', text)
51
+ return cleaned_text
52
+
53
+ def Removing_non_arabic(text):
54
+ text =re.sub(r'[^0-9\u0600-\u06ff\u0750-\u077f\ufb50-\ufbc1\ufbd3-\ufd3f\ufd50-\ufd8f\ufd50-\ufd8f\ufe70-\ufefc\uFDF0-\uFDFD.0-9ู -ูฉ]+', ' ',text)
55
+ return text
56
+
57
+ nltk.download('stopwords')
58
+ ara_punctuations = '''`รทร—ุ›<>_()*&^%][ู€ุŒ/:"ุŸ.,'{}~ยฆ+|!โ€โ€ฆโ€œโ€“ู€''' + string.punctuation
59
+ stop_words = stopwords.words()
60
+
61
+ def remove_punctuations(text):
62
+ translator = str.maketrans('', '', ara_punctuations)
63
+ text = text.translate(translator)
64
+
65
+ return text
66
+
67
+
68
+ def remove_tashkeel(text):
69
+ text = text.strip()
70
+ text = re.sub("[ุฅุฃูฑุขุง]", "ุง", text)
71
+ text = re.sub("ู‰", "ูŠ", text)
72
+ text = re.sub("ุค", "ุก", text)
73
+ text = re.sub("ุฆ", "ุก", text)
74
+ text = re.sub("ุฉ", "ู‡", text)
75
+ noise = re.compile(""" ู‘ | # Tashdid
76
+ ูŽ | # Fatha
77
+ ู‹ | # Tanwin Fath
78
+ ู | # Damma
79
+ ูŒ | # Tanwin Damm
80
+ ู | # Kasra
81
+ ู | # Tanwin Kasr
82
+ ู’ | # Sukun
83
+ ู€ # Tatwil/Kashida
84
+ """, re.VERBOSE)
85
+ text = re.sub(noise, '', text)
86
+ text = re.sub(r'(.)\1+', r"\1\1", text)
87
+ return araby.strip_tashkeel(text)
88
+
89
+ arabic_stopwords = stopwords.words("arabic")
90
+ def remove_stop_words(text):
91
+ Text=[i for i in str(text).split() if i not in arabic_stopwords]
92
+ return " ".join(Text)
93
+
94
+ def tokenize_text(text):
95
+ tokens = word_tokenize(text)
96
+ return tokens
97
+
98
+ def Arabic_Light_Stemmer(text):
99
+
100
+ Arabic_Stemmer = ArabicLightStemmer()
101
+ text=[Arabic_Stemmer.light_stem(y) for y in text]
102
+
103
+ return " " .join(text)
104
+
105
+ def preprocess_text(text):
106
+ text = remove_numbers(text)
107
+ text = Removing_non_arabic(text)
108
+ text = remove_punctuations(text)
109
+ text = remove_stop_words(text)
110
+ text = remove_tashkeel(text)
111
+ text = tokenize_text(text)
112
+ text = Arabic_Light_Stemmer(text)
113
+ return text
114
+
115
+ class_mapping = {
116
+ 0: "ุฌู†ุงุฆูŠุฉ",
117
+ 1: "ุงุญูˆุงู„ ุดุฎุตูŠุฉ",
118
+ 2: "ุนุงู…ุฉ"
119
+ }
120
+ st.markdown("""
121
+ <style>
122
+ body {
123
+ background-color: #f0f4f8;
124
+ direction: rtl;
125
+ font-family: 'Arial', sans-serif;
126
+ }
127
+
128
+ .logo-container {
129
+ display: flex;
130
+ justify-content: center;
131
+ align-items: center;
132
+ margin-bottom: 20px;
133
+ }
134
+
135
+ .stTextArea textarea, .stText {
136
+ text-align: right;
137
+ }
138
+
139
+ .stButton>button {
140
+ background-color: #3498db;
141
+ color: white;
142
+ font-family: 'Arial', sans-serif;
143
+ }
144
+
145
+ .stButton>button:hover {
146
+ background-color: #2980b9;
147
+ }
148
+
149
+ h1, h2, h3, h4, h5, h6, .stSubheader {
150
+ text-align: right;
151
+ }
152
+
153
+ .home-title {
154
+ text-align: center;
155
+ font-size: 40px;
156
+ color: #3498db;
157
+ }
158
+
159
+ .home-description {
160
+ text-align: center;
161
+ font-size: 20px;
162
+ color: #2c3e50;
163
+ }
164
+
165
+ .larger-text {
166
+ font-size: 24px;
167
+ color: #2c3e50;
168
+ }
169
+ </style>
170
+ """, unsafe_allow_html=True)
171
+
172
+
173
+ # Function for the Home Page
174
+ def home_page():
175
+ st.markdown('<h1 class="home-title">ู…ุฑุญุจุง ุจูƒ ููŠ ุชุทุจูŠู‚ ูˆุฌูŠุฒ</h1>', unsafe_allow_html=True)
176
+ st.markdown('<p class="home-description">ุชุทุจูŠู‚ ูˆุฌูŠุฒ ูŠู‚ุฏู… ู„ูƒ ุฎุฏู…ุฉ ุงู„ุชุตู†ูŠู ูˆุงู„ู…ู„ุฎุต ู„ู„ู†ุตูˆุต ุงู„ู‚ุงู†ูˆู†ูŠุฉ. ูŠู…ูƒู†ูƒ ุฅุฏุฎุงู„ ุงู„ู†ุตูˆุต ู‡ู†ุง ู„ู„ุญุตูˆู„ ุนู„ู‰ ุชุตู†ูŠู ุฏู‚ูŠู‚ ูˆู…ู„ุฎุต ุดุงู…ู„.</p>', unsafe_allow_html=True)
177
+
178
+
179
+ def main_page():
180
+ st.title("ุตู†ู ูˆู„ุฎุต")
181
+
182
+ # Input text area
183
+ input_text = st.text_area("ุงุฏุฎู„ ุงู„ู†ุต", "")
184
+
185
+ if st.button('ุตู†ู ูˆู„ุฎุต'):
186
+ if input_text:
187
+ prepro = preprocess_text(input_text)
188
+ features = vectorizer.transform([prepro])
189
+ prediction = model_classify.predict(features)
190
+ classifiy = prediction[0]
191
+ classifiy_class = class_mapping.get(classifiy, "ู„ู… ูŠุชู… ุงู„ุชุนุฑู")
192
+
193
+ # Generate the summarized text
194
+ summarized_text = summarize_text(input_text)
195
+
196
+ st.markdown('<p class="larger-text">ุชุตู†ูŠู ุงู„ู‚ุถูŠุฉ :</p>', unsafe_allow_html=True)
197
+ st.write(classifiy_class)
198
+
199
+ st.markdown('<p class="larger-text">ู…ู„ุฎุต ู„ู„ู‚ุถูŠุฉ :</p>', unsafe_allow_html=True)
200
+ st.write(summarized_text)
201
+
202
+ def app():
203
+ # Sidebar navigation with logo inside the sidebar
204
+ with st.sidebar:
205
+ st.markdown('<div class="logo-container">', unsafe_allow_html=True)
206
+ st.image("logo.png", width=200) # Make sure you have the logo file in your app folder
207
+ st.markdown('</div>', unsafe_allow_html=True)
208
+
209
+ st.header("ุชุทูŠูŠู‚ ูˆุฌูŠุฒ")
210
+ page_selection = st.selectbox("ุงุฎุชุฑ ุตูุญุฉ", ["ุงู„ุฑุฆูŠุณูŠุฉ", " ุตู†ู ูˆู„ุฎุต !"])
211
+
212
+ if page_selection == "ุงู„ุฑุฆูŠุณูŠุฉ":
213
+ home_page()
214
+ elif page_selection == " ุตู†ู ูˆู„ุฎุต !":
215
+ main_page()
216
+
217
+ if __name__ == "__main__":
218
+ app()
logo.png ADDED
svm_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56e1780885b58ab910fe9ac58d65ea5f0ddfb81e1527d6e2c0296b39b8a53351
3
+ size 1625610
tfidf_vectorizer.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a69fa5f5c65c4043d928a2b1350315e12709b89b647340ba86b2c08cacefb0d
3
+ size 231319