bwingenroth
commited on
Refactor to also run from command line
Browse files
app.py
CHANGED
@@ -18,6 +18,7 @@ from pdf2image import convert_from_bytes, convert_from_path
|
|
18 |
|
19 |
import re
|
20 |
import requests
|
|
|
21 |
from urllib.parse import urlparse, parse_qs
|
22 |
|
23 |
from unilm.dit.object_detection.ditod import add_vit_config
|
@@ -51,69 +52,128 @@ cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
51 |
# Step 4: define model
|
52 |
predictor = DefaultPredictor(cfg)
|
53 |
|
|
|
|
|
|
|
|
|
54 |
|
55 |
def analyze_image(img):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
#
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
#
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
def handle_input(input_data):
|
119 |
images = []
|
@@ -121,7 +181,7 @@ def handle_input(input_data):
|
|
121 |
#input_data is a dict with keys 'text' and 'files'
|
122 |
if 'text' in input_data and input_data['text']:
|
123 |
input_text = input_data['text'].strip()
|
124 |
-
|
125 |
# this is either a URL or a PDF ID
|
126 |
if input_text.startswith('http://') or input_text.startswith('https://'):
|
127 |
# Extract the ID from the URL
|
@@ -164,22 +224,21 @@ def handle_input(input_data):
|
|
164 |
if not images:
|
165 |
raise ValueError("No valid input provided. Please upload a file or enter a PDF ID.")
|
166 |
|
167 |
-
# Assuming
|
168 |
return process_images(images)
|
169 |
|
170 |
def load_image(img_path):
|
171 |
print(f"Loading image: {img_path}")
|
172 |
# Load an image from a file path
|
173 |
image = Image.open(img_path)
|
|
|
|
|
|
|
|
|
174 |
if isinstance(image, Image.Image):
|
|
|
175 |
image = np.array(image) # Convert PIL Image to numpy array
|
176 |
-
|
177 |
-
if image.ndim == 2: # Image is grayscale
|
178 |
-
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
179 |
-
elif image.ndim == 3 and image.shape[2] == 3:
|
180 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
181 |
-
# image = image[:, :, ::-1] # Convert RGB to BGR if necessary
|
182 |
-
|
183 |
return image
|
184 |
|
185 |
def construct_download_url(pdf_id):
|
@@ -236,63 +295,95 @@ def process_images(images):
|
|
236 |
all_medium_confidence = []
|
237 |
all_low_confidence = []
|
238 |
|
|
|
239 |
for img in images:
|
|
|
240 |
#print("Type of img before processing:", type(img))
|
241 |
#print(f" img before processing: {img}")
|
242 |
processed_images, high_confidence, medium_confidence, low_confidence = analyze_image(img)
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
all_high_confidence.extend(high_confidence)
|
|
|
|
|
|
|
245 |
all_medium_confidence.extend(medium_confidence)
|
|
|
|
|
|
|
246 |
all_low_confidence.extend(low_confidence)
|
247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
return all_processed_images, all_high_confidence, all_medium_confidence, all_low_confidence
|
249 |
-
|
250 |
title = "OIDA Image Collection Interactive demo: Document Layout Analysis with DiT and PubLayNet"
|
251 |
description = "<h3>OIDA Demo -- adapted liberally from <a href='https://huggingface.co/spaces/nielsr/dit-document-layout-analysis'>https://huggingface.co/spaces/nielsr/dit-document-layout-analysis</a></h3>Demo for Microsoft's DiT, the Document Image Transformer for state-of-the-art document understanding tasks. This particular model is fine-tuned on PubLayNet, a large dataset for document layout analysis (read more at the links below). To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
|
252 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.02378' target='_blank'>Paper</a> | <a href='https://github.com/microsoft/unilm/tree/master/dit' target='_blank'>Github Repo</a> | <a href='https://huggingface.co/docs/transformers/master/en/model_doc/dit' target='_blank'>HuggingFace doc</a> | <a href='https://ieeexplore.ieee.org/document/8977963' target='_blank'>PubLayNet paper</a></p>"
|
253 |
#examples =[['fpmj0236_Page_012.png'],['fnmf0234_Page_2.png'],['publaynet_example.jpeg'],['fpmj0236_Page_018.png'],['lrpw0232_Page_14.png'],['kllx0250'],['https://www.industrydocuments.ucsf.edu/opioids/docs/#id=yqgg0230']]
|
254 |
-
|
255 |
-
|
|
|
256 |
css = ".output-image, .input-image, .image-preview {height: 600px !important} td.textbox {display:none;} #component-5 .submit-button {display:none;}"
|
257 |
|
258 |
-
|
259 |
-
#
|
260 |
-
#
|
261 |
-
#
|
262 |
-
#
|
263 |
-
#
|
264 |
-
#
|
265 |
-
# gr.Gallery(label="Figures with
|
266 |
-
# gr.Gallery(label="Figures with
|
267 |
-
#
|
268 |
-
#
|
269 |
-
#
|
270 |
-
#
|
271 |
-
#
|
272 |
-
|
273 |
-
|
|
|
274 |
gr.Markdown(f"# {title}")
|
275 |
gr.HTML(description)
|
276 |
-
|
277 |
with gr.Row():
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
with gr.Row():
|
295 |
gr.HTML(article)
|
296 |
submit_btn.click(handle_input, [input], outputs)
|
297 |
|
298 |
-
iface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
import re
|
20 |
import requests
|
21 |
+
from collections import namedtuple
|
22 |
from urllib.parse import urlparse, parse_qs
|
23 |
|
24 |
from unilm.dit.object_detection.ditod import add_vit_config
|
|
|
52 |
# Step 4: define model
|
53 |
predictor = DefaultPredictor(cfg)
|
54 |
|
55 |
+
# Set up internal data structure
|
56 |
+
# Define a namedtuple for holding extracted image data
|
57 |
+
ExtractedImage = namedtuple("ExtractedImage", ["image", "annotated_page", "original_page", "confidence_score", "top_left", "bottom_right", "num_pixels", "is_color"])
|
58 |
+
|
59 |
|
60 |
def analyze_image(img):
|
61 |
+
images = extract_images(img)
|
62 |
+
|
63 |
+
# Filter out figures based on class labels
|
64 |
+
high_confidence = []
|
65 |
+
medium_confidence = []
|
66 |
+
low_confidence = []
|
67 |
+
result_image = img
|
68 |
+
|
69 |
+
for extracted_image_object in images:
|
70 |
+
cropped_img = extracted_image_object.image
|
71 |
+
confidence_score = extracted_image_object.confidence_score
|
72 |
+
confidence_text = f"Score: {confidence_score:.2f}%"
|
73 |
+
|
74 |
+
if cropped_img is not None:
|
75 |
+
# Overlay confidence score on the image
|
76 |
+
# Enhanced label visualization with orange color
|
77 |
+
font_scale = 0.9
|
78 |
+
font_thickness = 2
|
79 |
+
text_color = (255, 255, 255) # white background
|
80 |
+
#background_color = (0, 165, 255) # BGR for orange
|
81 |
+
background_color = (255, 165, 0) # RGB for orange
|
82 |
+
|
83 |
+
(text_width, text_height), _ = cv2.getTextSize(confidence_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
|
84 |
+
padding = 12
|
85 |
+
text_offset_x = padding - 3
|
86 |
+
text_offset_y = cropped_img.shape[0] - padding + 2
|
87 |
+
box_coords = ((text_offset_x, text_offset_y + padding // 2), (text_offset_x + text_width + padding, text_offset_y - text_height - padding // 2))
|
88 |
+
cv2.rectangle(cropped_img, box_coords[0], box_coords[1], background_color, cv2.FILLED)
|
89 |
+
cv2.putText(cropped_img, confidence_text, (text_offset_x, text_offset_y), cv2.FONT_HERSHEY_SIMPLEX, font_scale, text_color, font_thickness)
|
90 |
+
# end adding score annotation
|
91 |
+
|
92 |
+
#result_image.append(extracted_image_object.annotated_page)
|
93 |
+
if extracted_image_object.annotated_page is not None:
|
94 |
+
result_image = extracted_image_object.annotated_page
|
95 |
+
# Categorize images based on confidence levels
|
96 |
+
if confidence_score > 85:
|
97 |
+
high_confidence.append(cropped_img)
|
98 |
+
elif confidence_score > 50:
|
99 |
+
medium_confidence.append(cropped_img)
|
100 |
+
elif cropped_img is not None:
|
101 |
+
low_confidence.append(cropped_img)
|
102 |
+
|
103 |
+
return result_image, high_confidence, medium_confidence, low_confidence
|
104 |
+
|
105 |
+
|
106 |
+
def extract_images(img):
|
107 |
+
md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
|
108 |
+
if cfg.DATASETS.TEST[0]=='icdar2019_test':
|
109 |
+
md.set(thing_classes=["table"])
|
110 |
+
else:
|
111 |
+
md.set(thing_classes=["text","title","list","table","figure"]) ## these are categories from PubLayNet (PubMed PDF/XML data): https://ieeexplore.ieee.org/document/8977963
|
112 |
+
|
113 |
+
is_color = None
|
114 |
+
print(f"###################### Is effectively grayscale? {is_effectively_grayscale_np(img)} #######################")
|
115 |
+
print(f"############################### ndim {img.ndim} -- shape[2] {img.shape[2]} #######################")
|
116 |
+
# Ensure the image is in the correct format
|
117 |
+
if img.ndim == 2: # Image is grayscale, needs converting
|
118 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
119 |
+
elif img.ndim == 3 and img.shape[2] == 3:
|
120 |
+
if not is_effectively_grayscale_np(img): # Image is RGB mode, but still only using grayscale colors
|
121 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
122 |
+
is_color = True
|
123 |
+
outputs = predictor(img)
|
124 |
+
instances = outputs["instances"]
|
125 |
+
|
126 |
+
# Ensure we're operating on CPU for numpy compatibility
|
127 |
+
instances = instances.to("cpu")
|
128 |
+
|
129 |
+
extracted_images = []
|
130 |
+
|
131 |
+
v = Visualizer(img[:, :, ::-1], md, scale=1.0, instance_mode=ColorMode.SEGMENTATION)
|
132 |
+
result_image = v.draw_instance_predictions(instances).get_image()[:, :, ::-1]
|
133 |
+
result_image = cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB)
|
134 |
+
|
135 |
+
for i in range(len(instances)):
|
136 |
+
if md.thing_classes[instances.pred_classes[i]] == "figure":
|
137 |
+
box = instances.pred_boxes.tensor[i].numpy().astype(int)
|
138 |
+
cropped_img = img[box[1]:box[3], box[0]:box[2]]
|
139 |
+
cropped_img = cv2.cvtColor(cropped_img, cv2.COLOR_BGR2RGB)
|
140 |
+
confidence_score = instances.scores[i].numpy() * 100 # convert to percentage
|
141 |
+
num_pixels = cropped_img.shape[0] * cropped_img.shape[1]
|
142 |
+
is_color = len(cropped_img.shape) == 3 and cropped_img.shape[2] == 3 and not is_effectively_grayscale_np(img)
|
143 |
+
|
144 |
+
extracted_images.append(ExtractedImage(
|
145 |
+
image=cropped_img,
|
146 |
+
annotated_page=result_image,
|
147 |
+
original_page=img,
|
148 |
+
confidence_score=confidence_score,
|
149 |
+
top_left=f"{box[0]}-{box[1]}",
|
150 |
+
bottom_right=f"{box[2]}-{box[3]}",
|
151 |
+
num_pixels=num_pixels,
|
152 |
+
is_color=is_color
|
153 |
+
))
|
154 |
+
|
155 |
+
if not extracted_images: # there were none to process, still need to return basic image
|
156 |
+
extracted_images.append(ExtractedImage(
|
157 |
+
image=None, # or an appropriate default value
|
158 |
+
annotated_page=result_image,
|
159 |
+
original_page=img, # The original input image
|
160 |
+
confidence_score=-1, # Indicates no confidence
|
161 |
+
top_left=None,
|
162 |
+
bottom_right=None, # No bounding box coordinates
|
163 |
+
num_pixels=0, # No pixels counted
|
164 |
+
is_color=False # Default to grayscale or False
|
165 |
+
))
|
166 |
+
|
167 |
+
return extracted_images
|
168 |
+
|
169 |
+
|
170 |
+
def is_effectively_grayscale_np(array):
|
171 |
+
if array.ndim != 3 or array.shape[2] != 3:
|
172 |
+
raise ValueError("Input must be an RGB image")
|
173 |
+
# Check if all color channels are equal across the image
|
174 |
+
r, g, b = array[:,:,0], array[:,:,1], array[:,:,2]
|
175 |
+
return np.array_equal(r, g) and np.array_equal(g, b)
|
176 |
+
|
177 |
|
178 |
def handle_input(input_data):
|
179 |
images = []
|
|
|
181 |
#input_data is a dict with keys 'text' and 'files'
|
182 |
if 'text' in input_data and input_data['text']:
|
183 |
input_text = input_data['text'].strip()
|
184 |
+
|
185 |
# this is either a URL or a PDF ID
|
186 |
if input_text.startswith('http://') or input_text.startswith('https://'):
|
187 |
# Extract the ID from the URL
|
|
|
224 |
if not images:
|
225 |
raise ValueError("No valid input provided. Please upload a file or enter a PDF ID.")
|
226 |
|
227 |
+
# Assuming process_images returns galleries of images by confidence
|
228 |
return process_images(images)
|
229 |
|
230 |
def load_image(img_path):
|
231 |
print(f"Loading image: {img_path}")
|
232 |
# Load an image from a file path
|
233 |
image = Image.open(img_path)
|
234 |
+
print(f" Image mode: {image.mode}") # Add this debug line
|
235 |
+
if image.mode != 'RGB':
|
236 |
+
print(f" Converting from {image.mode} to RGB")
|
237 |
+
image = image.convert('RGB')
|
238 |
if isinstance(image, Image.Image):
|
239 |
+
print(" Converting to numpy")
|
240 |
image = np.array(image) # Convert PIL Image to numpy array
|
241 |
+
print(f" Array shape: {image.shape}") # Add this debug line
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
return image
|
243 |
|
244 |
def construct_download_url(pdf_id):
|
|
|
295 |
all_medium_confidence = []
|
296 |
all_low_confidence = []
|
297 |
|
298 |
+
idx = 0
|
299 |
for img in images:
|
300 |
+
idx += 1
|
301 |
#print("Type of img before processing:", type(img))
|
302 |
#print(f" img before processing: {img}")
|
303 |
processed_images, high_confidence, medium_confidence, low_confidence = analyze_image(img)
|
304 |
+
if processed_images is None:
|
305 |
+
print(f" ******* processed_images is None on page: {idx}")
|
306 |
+
else:
|
307 |
+
all_processed_images.append(processed_images)
|
308 |
+
print(f" ******* type of processed_images: {type(processed_images)}")
|
309 |
+
|
310 |
+
if not high_confidence:
|
311 |
+
print(f" ******* high_confidence is empty on page: {idx}")
|
312 |
all_high_confidence.extend(high_confidence)
|
313 |
+
|
314 |
+
if not medium_confidence:
|
315 |
+
print(f" ******* medium_confidence is empty on page: {idx}")
|
316 |
all_medium_confidence.extend(medium_confidence)
|
317 |
+
|
318 |
+
if not low_confidence:
|
319 |
+
print(f" ******* low_confidence is empty on page: {idx}")
|
320 |
all_low_confidence.extend(low_confidence)
|
321 |
|
322 |
+
print(f" ******* Size of all_process_images: {len(all_processed_images)}")
|
323 |
+
for item in all_processed_images: print(f"Type Check all_processed: {type(item)}")
|
324 |
+
print(f" ******* Size of all_high_conf: {len(all_high_confidence)}")
|
325 |
+
for item in all_high_confidence: print(f"Type Check high_conf: {type(item)}")
|
326 |
+
print(f" ******* Size of all_med: {len(all_medium_confidence)}")
|
327 |
+
for item in all_medium_confidence: print(f"Type Check med_conf: {type(item)}")
|
328 |
+
print(f" ******* Size of all_low: {len(all_low_confidence)}")
|
329 |
+
for item in all_low_confidence: print(f"Type Check low_conf: {type(item)}")
|
330 |
return all_processed_images, all_high_confidence, all_medium_confidence, all_low_confidence
|
331 |
+
|
332 |
title = "OIDA Image Collection Interactive demo: Document Layout Analysis with DiT and PubLayNet"
|
333 |
description = "<h3>OIDA Demo -- adapted liberally from <a href='https://huggingface.co/spaces/nielsr/dit-document-layout-analysis'>https://huggingface.co/spaces/nielsr/dit-document-layout-analysis</a></h3>Demo for Microsoft's DiT, the Document Image Transformer for state-of-the-art document understanding tasks. This particular model is fine-tuned on PubLayNet, a large dataset for document layout analysis (read more at the links below). To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
|
334 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.02378' target='_blank'>Paper</a> | <a href='https://github.com/microsoft/unilm/tree/master/dit' target='_blank'>Github Repo</a> | <a href='https://huggingface.co/docs/transformers/master/en/model_doc/dit' target='_blank'>HuggingFace doc</a> | <a href='https://ieeexplore.ieee.org/document/8977963' target='_blank'>PubLayNet paper</a></p>"
|
335 |
#examples =[['fpmj0236_Page_012.png'],['fnmf0234_Page_2.png'],['publaynet_example.jpeg'],['fpmj0236_Page_018.png'],['lrpw0232_Page_14.png'],['kllx0250'],['https://www.industrydocuments.ucsf.edu/opioids/docs/#id=yqgg0230']]
|
336 |
+
|
337 |
+
examples =[{'files': ['fnmf0234_Page_2.png']},{'files': ['fpmj0236_Page_012.png']},{'files': ['lrpw0232.pdf']},{'text': 'https://www.industrydocuments.ucsf.edu/opioids/docs/#id=yqgg0230'},{'files':['fpmj0236_Page_018.png']},{'files':['lrpw0232_Page_14.png']},{'files':['publaynet_example.jpeg']},{'text':'kllx0250'},{'text':'txhk0255'},{'text':'gpdk0256'}]
|
338 |
+
|
339 |
css = ".output-image, .input-image, .image-preview {height: 600px !important} td.textbox {display:none;} #component-5 .submit-button {display:none;}"
|
340 |
|
341 |
+
def setup_gradio_interface():
|
342 |
+
#iface = gr.Interface(fn=handle_input,
|
343 |
+
# inputs=gr.MultimodalTextbox(interactive=True,
|
344 |
+
# label="Upload image/PDF file OR enter OIDA ID or URL",
|
345 |
+
# file_types=["image",".pdf"],
|
346 |
+
# placeholder="Upload image/PDF file OR enter OIDA ID or URL"),
|
347 |
+
# outputs=[gr.Gallery(label="annotated documents"),
|
348 |
+
# gr.Gallery(label="Figures with High (>85%) Confidence Scores"),
|
349 |
+
# gr.Gallery(label="Figures with Moderate (50-85%) Confidence Scores"),
|
350 |
+
# gr.Gallery(label="Figures with Lower Confidence (under 50%) Scores")],
|
351 |
+
# title=title,
|
352 |
+
# description=description,
|
353 |
+
# examples=examples,
|
354 |
+
# article=article,
|
355 |
+
# css=css)
|
356 |
+
## enable_queue=True)
|
357 |
+
with gr.Blocks(css=css) as iface:
|
358 |
gr.Markdown(f"# {title}")
|
359 |
gr.HTML(description)
|
360 |
+
|
361 |
with gr.Row():
|
362 |
+
with gr.Column():
|
363 |
+
input = gr.MultimodalTextbox(interactive=True,
|
364 |
+
label="Upload image/PDF file OR enter OIDA ID or URL",
|
365 |
+
file_types=["image",".pdf"],
|
366 |
+
placeholder="Upload image/PDF file OR enter OIDA ID or URL",
|
367 |
+
submit_btn=None)
|
368 |
+
submit_btn = gr.Button("Submit")
|
369 |
+
gr.HTML('<br /><br /><hr />')
|
370 |
+
gr.Examples(examples, [input])
|
371 |
+
|
372 |
+
with gr.Column():
|
373 |
+
outputs = [gr.Gallery(label="annotated documents"),
|
374 |
+
gr.Gallery(label="Figures with High (>85%) Confidence Scores"),
|
375 |
+
gr.Gallery(label="Figures with Moderate (50-85%) Confidence Scores"),
|
376 |
+
gr.Gallery(label="Figures with Lower Confidence (under 50%) Scores")]
|
377 |
+
|
378 |
with gr.Row():
|
379 |
gr.HTML(article)
|
380 |
submit_btn.click(handle_input, [input], outputs)
|
381 |
|
382 |
+
return iface
|
383 |
+
|
384 |
+
def main():
|
385 |
+
iface = setup_gradio_interface()
|
386 |
+
iface.launch(debug=True, auth=[("oida", "OIDA3.1"), ("Brian", "Hi")]) #, cache_examples=True)
|
387 |
+
|
388 |
+
if __name__ == "__main__":
|
389 |
+
main()
|