File size: 7,578 Bytes
38cf0bb cea395e 38cf0bb fda58da 19341ef fda58da f8ebdbc 439e01f 38cf0bb 19341ef f484ffe a43071a fda58da a43071a 19341ef 38cf0bb fda58da 38cf0bb fda58da 38cf0bb fda58da 38cf0bb 19341ef fda58da 2eff77d 19341ef 439e01f 38cf0bb fda58da 38cf0bb 19341ef 38cf0bb fcbb419 fda58da 439e01f fda58da 439e01f fda58da 439e01f fda58da 38cf0bb fda58da 19341ef 38cf0bb 2eff77d fda58da f8ebdbc fda58da 38cf0bb fcbb419 fda58da b637d6b fda58da 38cf0bb fda58da f8ebdbc 19341ef 439e01f 38cf0bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import streamlit as st
from langchain_core.messages import AIMessage, HumanMessage
from langchain_community.chat_models import ChatOpenAI
from dotenv import load_dotenv
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_mistralai.chat_models import ChatMistralAI
from download_chart import construct_plot
from prompt import get_prompts_list
from st_copy_to_clipboard import st_copy_to_clipboard
from high_chart import test_chart
from export_doc import export_conversation
load_dotenv()
def format_context(partie_prenante_grouped,marque):
context = "la marque est " + marque + ".\n"
context += f"Le nombre de parties prenantes est {len(partie_prenante_grouped)} et ils sont les suivantes:\n"
for i,partie_prenante in enumerate(partie_prenante_grouped):
context += f"{i}.{partie_prenante['name']} est une partie prenante de {marque} et a un pouvoir de {partie_prenante['y']}% et une influence de {partie_prenante['x']}%.\n"
segmentation = '''
Les parties prenantes sont segmentées en 4 catégories:
- Rendre satisfait: le pouvoir est entre 50 et 100 et l'influence est entre 0 et 50
- Gérer étroitement: le pouvoir est entre 50 et 100 et l'influence est entre 50 et 100
- Suivre de près: le pouvoir est entre 0 et 50 et l'influence est entre 0 et 50
- Tenir informé: le pouvoir est entre 0 et 50 et l'influence est entre 50 et 100
'''
context += segmentation
return context
def get_response(user_query, chat_history, context,llm=None):
template = """
Fournir des réponses, en francais, précises et contextuelles en agissant comme un expert en affaires, en utilisant le contexte des parties prenantes et leur pouvoir en pourcentage et leur influence en pourcentage pour expliquer les implications pour la marque. Le modèle doit connecter les informations du contexte et de l'historique de la conversation pour donner une réponse éclairée à la dernière question posée.
Contexte: {context}
Chat history: {chat_history}
User question: {user_question}
"""
prompt = ChatPromptTemplate.from_template(template)
#llm = ChatOpenAI(model="gpt-4o")
if not llm:
llm = ChatOpenAI(model="gpt-4o")
elif llm == "GPT-4o":
llm = ChatOpenAI(model="gpt-4o")
elif llm == "Mistral (FR)":
llm = ChatMistralAI(model_name="mistral-large-latest")
chain = prompt | llm | StrOutputParser()
return chain.stream({
"context": context,
"chat_history": chat_history,
"user_question": user_query,
})
def display_chart():
if "pp_grouped" not in st.session_state or st.session_state['pp_grouped'] is None or len(st.session_state['pp_grouped']) == 0:
st.warning("Aucune partie prenante n'a été définie")
return None
plot = construct_plot()
st.plotly_chart(plot)
@st.experimental_dialog("Choisissez un prompt",width="large")
def show_prompts():
if get_prompts_list() == 1:
st.rerun()
if st.button("Fermer"):
st.rerun()
@st.experimental_dialog("Choisissez votre IA",width="small")
def choose_model(index):
model = st.radio("Choisissez votre IA", ["(US) ChatGpt 4.o","(FR) Mistral AI - Large (open source)"],index=index)
if model == "(FR) Mistral AI - Large (open source)":
st.session_state.model = "Mistral (FR)"
if model == "(US) ChatGpt 4.o":
st.session_state.model = "GPT-4o"
if st.button("Valider"):
st.rerun()
@st.experimental_dialog("Ma cartographie",width="large")
def disp_carto_in_chat():
test_chart()
@st.experimental_dialog("Telecharger",width="large")
def dowmload_history():
summary = get_response("Donne moi un RESUME de la Conversation", st.session_state.chat_history,format_context(st.session_state['pp_grouped'],st.session_state['Nom de la marque']),st.session_state.model)
summary = ''.join(summary)
export_conversation(AIMessage(content=summary).content)
def display_chat():
# app config
st.title("Chatbot")
models_name = {
"Mistral (FR)":1,
"GPT-4o":0
}
# session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
AIMessage(content="Salut, voici votre cartographie des parties prenantes. Que puis-je faire pour vous?"),
]
if "model" not in st.session_state:
st.session_state.model = "GPT-4o"
#sticky bar at the top
header = st.container()
col1,col2,col3, col4 = header.columns([2,3,2,4])
if col1.button("Prompts"):
show_prompts()
if col2.button(f"Modèle: {st.session_state.model}"):
index = models_name[st.session_state.model]
choose_model(index)
if col3.button("Ma Carto"):
disp_carto_in_chat()
if col4.button("Télécharger"):
dowmload_history()
header.write("""<div class='fixed-header'/>""", unsafe_allow_html=True)
# Custom CSS for the sticky header
st.markdown(
"""
<style>
div[data-testid="stVerticalBlock"] div:has(div.fixed-header) {
position: sticky;
top: 2.875rem;
background-color: white;
z-index: 999;
}
.fixed-header {
border-bottom: 0px solid black;
}
</style>
""",
unsafe_allow_html=True
)
# conversation
for message in st.session_state.chat_history:
if isinstance(message, AIMessage):
with st.chat_message("AI"):
st.write(message.content)
if "cartographie" in message.content:
display_chart()
elif isinstance(message, HumanMessage):
with st.chat_message("Moi"):
st.write(message.content)
#check if the last message is from the user , that means execute button has been clicked
last_message = st.session_state.chat_history[-1]
if isinstance(last_message, HumanMessage):
with st.chat_message("AI"):
response = st.write_stream(get_response(last_message.content, st.session_state.chat_history,format_context(st.session_state['pp_grouped'],st.session_state['Nom de la marque']),st.session_state.model))
st_copy_to_clipboard(response)
st.session_state.chat_history.append(AIMessage(content=response))
if "pp_grouped" not in st.session_state or st.session_state['pp_grouped'] is None or len(st.session_state['pp_grouped']) == 0:
st.session_state['pp_grouped'] = []
if "Nom de la marque" not in st.session_state:
st.session_state["Nom de la marque"] = ""
# user input
user_query = st.chat_input("Par ici...")
if user_query is not None and user_query != "":
st.session_state.chat_history.append(HumanMessage(content=user_query))
with st.chat_message("Moi"):
st.markdown(user_query)
with st.chat_message("AI"):
st.markdown(f"**{st.session_state.model}**")
response = st.write_stream(get_response(user_query, st.session_state.chat_history,format_context(st.session_state['pp_grouped'],st.session_state['Nom de la marque']),st.session_state.model))
st_copy_to_clipboard(response)
if "cartographie" in response:
display_chart()
if "rajoute" in response:
st.session_state['pp_grouped'].append({"name":"partie prenante","x":0,"y":0})
st.session_state.chat_history.append(AIMessage(content=response))
|